

International Journal of Current Research in Medical Sciences

ISSN: 2454-5716 (A Peer Reviewed, Indexed and Open Access Journal) www.ijcrims.com

Original Research Article

Volume 8, Issue 2 - 2022

DOI: http://dx.doi.org/10.22192/ijcrms.2022.08.02.001

In docking Analysis of siddha formulation Kana Mantha Mathirai (KMM) inhibiting the Prostaglandin H synthases and M3 muscarinic acetylcholine receptors in gastroenteritis.

Gayathri V¹, Victoria S², Shanmuga Priya C³, Manju Hemamalini N⁴

¹Post Graduate, Department of Kuzhanthai Maruthuvam, Government Siddha Medical College ²Head of the Department, Department of Kuzhanthai Maruthuvam, Government Siddha Medical College. ³Lecturer -II, Department of Kuzhanthai Maruthuvam, Government Siddha Medical College

⁴ Lecturer -II – Department of Kuzhanthai Maruthuvam, Government Siddha Medical College.

Abstract

Aim: To investigate the evaluation of antipyretic activity and anti diarrheal activity of kana mantha mathirai in docking method.

Study Design: Molecular study

Methodology: In molecular docking analysis was performed for phytocomponents present in kana mantha mathirai formulation for targets using Autodock tool.

Result: Among 8 active Phytocompounds present in the kana mantha mathirai.

Keywords: Siddha formulation, Kana mantha mathirai, Gastroenteritis, Molecular study.

Introduction

Gastroenteritis is a common childhood disease. It is defined as the inflammation of the mucus membrane of the gastrointestinal tract and is characterized by diarrhea or vomiting. In general developing countries have high rate of hospital admission as compared to developed countries. This may be due to the facts that children in developing countries have less nutritional status and primary care. Though there is a system, Siddha which providing solution to many pediatric health issues. Siddha system is guiding us to lead a perfect living in this world, starting from the first day of birth to the last day of death. Siddha system containing a large number of medicines which are different morphological categories, the method of preparation of each category is specific.

There are several medicines indicates in the treatment of Gastroenteritis. One of the medicine which is named as kana mantha mathirai. It is a polyherbalmedicine. Herbal medicine have a long history of use and are generally considered to be safer than synthetic drugs. Gastroenteritis is compared to kana mantham in siddha literature. And the kana mantha mathirai contains 6 ingredients which are Valmilagu (*Piper longum*), Vasambhu (*Acorus calamus*), lavangam

(Syzygium aromaticum), omam (Trachyspermum ammi), vellulli (Allium sativum), Senbagapoo (Michelia champaca). Bio active phytocomponents present in preparation of kana mantha mathirai medicine have the unique advantage of multiple mode of actions. All these used traditionally in the treatment of fever, inflammation, diarrhea respectively. This study intently describes the two important activities and binding capability to certain receptors of diarrhea and fever which are main symptoms of Gastroenteritis.

Methodology

Docking calculations were carried out using Auto Dock 4. Gasteiger partial charges were added to the ligand atoms. Non-polar hydrogen atoms were merged, and rotatable bonds were defined.

Docking calculations were carried out for test drug Piperine, Zingiberene, Apigenin, Barlerin, Coumaric acid, Solasodine, Limonene and

standard Salicylic acid against target protein. Essential hydrogen atoms, Kollman united atom type charges, and solvation parameters were added with the aid of AutoDock tools (Morris, Goodsell et al., 1998). Affinity (grid) maps of $\times \times$ Å grid points and 0.375 Å spacing were generated using the Autogrid program (Morris, Goodsell et al., 1998). Auto Dock parameter set- and distance-dependent dielectric functions were used in the calculation of the van der Waals and the electrostatic terms. respectively. Docking simulations were performed using the Lamarckian genetic algorithm (LGA) and the Solis & Wets local search method (Solis and Wets, 1981). Initial position, orientation, and torsions of the ligand molecules were set randomly. All rotatable torsions were released during docking. Each docking experiment was derived from 2 different runs that were set to terminate after a maximum of 250000 energy evaluations. The population size was set to 150. During the search, a translational step of 0.2 Å, and quaternion and torsion steps of 5 were applied.

Herbs	Scientific Name	Phyto components
Valmilaghu	Piper cubeba	-copaene
Vellulli	Allium sativum	Alliin
Kirambhu	Syzygium aromaticum	Kaempferol
Omam	Trachyspermum ammi	Carvone
Vasambhu.	Acorus calamus	Magnolin
Shenbaga.	Michelia champaca	Gallic acid
Poduthalai juice	Phyla nodiflora	Nepetin

List of Phytocomponents Selected for docking

Standard Marketed Drug -Loperamide and salicylic acid.

Objective:

Binding of phytocomponents with the core amino acids of the targets by forming hydrogen bond will hinder the function of the target prostaglandin

synthases and muscarinic receptor which is responsible for production of mediator senitize to fever and intestinal motility which mediates diarrhea. Thereby phytocomponents which inhibit and muscarinic receptor through this enzyme binding on amino acid present over the target may act as a potential therapeutic agent for management of fever and diarrhea symptoms.

PDB	Name of the Target
4U14	M3 muscarinic acetylcholine receptor
1I GX	Prostaglandin synthases

M3 muscarinic acetylcholine receptor -PDB- 4U14 and Prostaglandin H synthases

Receptor structure

Crystalline structure of the target proteinM3 muscarinic acetylcholine receptor -PDB- 4U14 and Prostaglandin H synthases- 11GX was retrieved from protein data bank and protein

clean-up process was done and essential missing hydrogen atom were being added. Different orientation of the lead molecules with respect to the target protein was evaluated by Autodock program and the best dock pose was selected based on the interaction study analysis

2D and 3D Structure of Selected Ligands

-copaene

Allicin

Kaempferol

Carvone

Magnolin

Nepetin

Loperamide

Salicylic acid

Ligand Properties of the Compounds selected for docking

Compound	Molar weight g/mol	Molecular Formula	H Bond Donor	H Bond Acceptor	Rotatable bonds	
-copaene	204.35 g/mol	$C_{15}H_{24}$	0	0	1	
Allicin	162.3 g/mol	$C_6H_{10}OS_2$	0	3	5	
Kaempferol	286.239 g/mol	C15H10O6	4	6	1	
Carvone	150.221 g/mol	C10H14O	0	1	1	
Magnolin	416.5 g/mol	$C_{23}H_{28}O_7$	0	7	7	
Gallic acid		$C_7H_6O_5$	4	5	1	
	170.12 g/mol					
Nepetin	316.26 g/mol	$C_{16}H_{12}O_7$	4	7	2	
Loperamide						
Salicylic acid	138.12g/mol	C7H6O3	2	3	1	

Compounds	Binding Free energy Kcal/mol	Inhibition constant Ki µM (*mM)(**nM)	Electrostatic energy Kcal/mol	Intermolecular energy Kcal/mol	Total Interaction Surface
-copaene	-5.41	107.49	-1.53	-6.45	461.35
Allicin	-6.61	14.38	-1.23	-6.38	411.92
Kaempferol	-6.36	21.88	-0.05	-6.74	688.46
Carvone	-6.41	20.10	-1.57	-7.03	469.58
Magnolin	-6.30	24.08	-0.02	-5.61	783.69
Gallic acid	-5.02	209.74	-0.06	-4.57	402.16
Nepetin	-6.60	14.62	-0.02	-5.99	756.75
Loperamide	-7.97	1.43	-0.40	-8.27	590.84
Salicylic acid	-6.04	37.12	-0.09	-6.22	605.18

Summary of the molecular docking studies of compounds against M3 muscarinic acetylcholine receptor -PDB- 4U14 and Prostaglandin H synthases-11GX

Amino acid Residue Interaction of Lead and Standard againstM3 muscarinic acetylcholine receptor - PDB- 4U14

Molecule	Interactions	Amin	Amino Acid Residue- Binding										
		116	147	151	503	506	507	529	532	533			
-copaene	4	ILE	ASP	SER	TRP	TYR	ASN	TYR	CYS	TYR			
		116	147	148	151	503	506	529	532	533			
Allicin	4	ILE	ASP	TYR	SER	TRP	TYR	TYR	CYS	TYR			
		116	147	148	151	225	231	234	506	529	533		
Kaempferol	3	ILE	ASP	TYR	SER	LEU	THR	THR	TYR	TYR	TYR		
		116	147	148	151	503	506	529	532	533			
Carvone	4	ILE	ASP	TYR	SER	TRP	TYR	TYR	CYS	TYR			
		148	151	225	231	234	235	238	239	499	503	506	
Magnolin	3	TYR	SER	LEU	THR	THR	ALA	ALA	PHE	PHE	TRP	TYR	
		116	147	148	151	506	529	532	533				
Gallic acid	3	ILE	ASP	TYR	SER	TYR	TYR	CYS	TYR				
		148	151	225	231	238	239	503	506	525			
Nepetin	3	TYR	SER	LEU	THR	ALA	PHE	TRP	TYR	TRP			
		151	199	231	234	235	238	503	506	510	529	532	533
Loperamide	4	SER	TRP	THR	THR	ALA	ALA	TRP	TYR	VAL	TYR	CYS	TYR

	Interac									
Molecule	tions	Amino Acid Residue- Binding								
			35							
-copaene	4	33 VAL	PRO	38 TYR	40 PRO	55 TYR				
			39							
Allicin	2	38 TYR	TYR	40 PRO	42 GLN	68 ASN				
			39		166		468	499		
Kaempferol	1	38 TYR	TYR	165 THR	LYS	465 GLU	LYS	ASP		
			39				468			
Carvone	2	38 TYR	TYR	40 PRO	42 GLN	68 ASN	LYS			
			38							
Magnolin	4	35 PRO	TYR	40 PRO	55 TYR					
			40				166	468		
Gallic acid	2	38 TYR	PRO	42 GLN	68 ASN	165 THR	LYS	LYS		
			38							
Nepetin	4	35 PRO	TYR	40 PRO	55 TYR	68 ASN				
			38							
Salicylic acid	4	35 PRO	TYR	40 PRO	54 ARG	55 TYR	68 ASN			

Amino acid Residue Interaction of Lead and Standard against Prostaglandin H synthases -1IGX

Observation and Inference

Total of 8 bioactive lead compounds were retrieved from the herbs present in the formulations Kana Mantha Mathirai. From reported data of the herb, the leads such as copaene, Allicin and Carvone,Magnolin and leptin possess80% binding efficacy by interacting with both the core target amino acids (Ser151, Tyr529, Tyr506, and Trp503,35PRO, 38 TYR, 40 PRO, 54 ARG, and 55 TYR) present on the target, followed by which the compounds like Kaempferol ,Magnolin, Gallic acid and Nepetin, Ollicin, Carvone, Gallic acid reveals 90% binding efficacy with target amino acid when compared with the standard Loperamide and Salicylic acid with 90% binding efficacy present on the target receptor M3 muscarinic acetylcholine receptor -PDB-4U14 and Prostaglandin H synthases.

Docking Pose

-copaene with M3 muscarinic acetylcholine receptor -PDB- 4U14

Hydrogen bond plotting Analysis with core amino acid

AllicinwithM3 muscarinic acetylcholine receptor -PDB- 4U14

Hydrogen bond plotting Analysis with core amino acid

Kaempferol withM3 muscarinic acetylcholine receptor -PDB- 4U14

Carvone with M3 muscarinic acetylcholine receptor -PDB- 4U14

Hydrogen bond plotting Analysis with core amino acid

MagnolinwithM3 muscarinic acetylcholine receptor -PDB- 4U14

Hydrogen bond plotting Analysis with core amino acid

Gallic acidwithM3 muscarinic acetylcholine receptor -PDB- 4U14

Hydrogen bond plotting Analysis with core amino acid

NepetinwithM3 muscarinic acetylcholine receptor -PDB- 4U14

Hydrogen bond plotting Analysis with core amino acid

LoperamidewithM3 muscarinic acetylcholine receptor -PDB- 4U14

Hydrogen bond plotting Analysis with core amino acid

Docking Pose

-copaene with Prostaglandin synthases -PDB- 11GX

Allicin with Prostaglandin synthases -PDB- 11GX

Hydrogen bond plotting Analysis with core amino acid

Kaempferol with Prostaglandin synthases -PDB- 11GX

Carvone with Prostaglandin synthases -PDB- 11GX

Magnolin with Prostaglandin synthases -PDB- 11GX

Gallic acid with Prostaglandin synthases -PDB- 11GX

Nepetin with Prostaglandin synthases -PDB- 11GX

Salicylic acid with Prostaglandin synthases -PDB- 11GX

Hydrogen bond plotting with core amino acid Analysis

Conclusion

Based on the results of the computational analysis it was concluded that the bio-active compound's like -copaene, Magnolin, Nepetin, Allicin, Carvone and Gallic acidpresent in the formulation revels significant binding against the target protein thereby it was concluded that these compounds may exerts promising anti-pyretic and anti diarrheal property by hindering the synthesis of prostaglandin and M3 muscarinic acetylcholine receptor -PDB- 4U14that mediates the fever and diarrhea.

References

1. Bikadi, Z., Hazai, E.Application of the *PM6 semi-empirical method to modeling* proteins enhances docking accuracy of Auto Dock. J. Cheminf. 1, 15 (2009)

- T. A. Halgren. Merck molecular force field. I. Basis, form, scope, parametrization, and performance of MMFF94. Journal of Computational Chemistry 17 (5-6), 490-519 (1998)
- 3. G. M. Morris, D. S. Goodsell, et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry 19 (14), 1639-1662(1998)
- 4. F. J. Solis and R. J. B. Wets. *Minimization by Random Search Techniques.*
- Andriana Y, xuan T.D, Quy TN, Tran HD, Le QT. Biological Activities and Chemical Constituents of essential oils from *Piper cubeba bojer* and *Piper nigrum* L. molecules. 2019 may 15; 24(10):1876.

- Ameh. G.I. Phytochemical screening and Antimicrobial studies on the methanolic bulb extract of *Allium sativum* L. African Journal of Biotechnology Vol.12 (14), pp 1665-1668, 3 April, 2013.
- Batiha G.E. Alkazmi L.M. Was ef LG, Beshbishy AM, Nadwa EH, Rashwan EK. Syzygium aromaticum L. (Myrtaceae). Traditional uses, Bioactive chemical Constituents, pharmacological and toxicological Activities, Biomolecules, 2020, 10(2):202.
- Bairwa R. Sodha RS, Rajawat B.S. *Trachyspermum ammi*, Pharmacogn. Rev 2012; 6(11):56-60.doi.10.4130/0973-7847. 95871.

- 9. Oiao D, Gan LS,Mo JX, Zhou CX (chemical Constituents of *Acorus calamus*) Zhongguo zhong Yaoza zhi 2012 Nov; 37(22): 3430- 3.
- 10. S.Taprial.A review on phytochemical and pharmacological properties of *Michelia champaca* linn. Family: magnoliaceae International Journal of Pharmacology. 2015: 430-436.
- R.A. Sharma ,Renu Singh. A Review on Phyla *Nodi flora* Linn.A wild wetland Medicinal Herb. Int. J. Pharm.Sci. Rev.Res, 20(1), 2013; 11, 57-63.

How to cite this article:

Gayathri V, Victoria S, Shanmuga Priya C, Manju Hemamalini N. (2022). In docking Analysis of siddha formulation Kana Mantha Mathirai (KMM) inhibiting the Prostaglandin H synthases and M3 muscarinic acetylcholine receptors in gastroenteritis. Int. J. Curr. Res. Med. Sci. 8(2): 1-24. DOI: http://dx.doi.org/10.22192/ijcrms.2022.08.02.001