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Abstract

After myocardial infarction, cardiac fibrosis develops and is crucial to the long-term prognosis of cardiac. The most
significant pathway on cardiac fibrosis following myocardial infarction is TGF-β signaling, but no one has
systematically elaborated the twofold effects and therapies target to TGF-β signaling. The effects of TGF-β on the
cardiac are dual: the protective effect was mostly seen in reducing inflammation and promoting remodeling, while the
negative effect was seen in fibrogenesis. Therefore, therapies that target the TGF-β signaling pathway have emerged
as a research hotspot in recent years. These therapies include gene therapy, pharmacological therapy, metabolic
process regulation, herbal medicine, and more. However, the subsequent problems, such as causing or accelerating
the processes of other diseases, must be carefully addressed. In this review, we highlighted the effects, therapies, and
issues aiming to the TGF-β signaling pathway on cardiac fibrosis following myocardial infarction.
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1. Introduction

Ischemia and hypoxia of cardiac cells cause
myocardial infarctions (MI), and the death of
related cells changes the structure and function of
the heart[1]. Reactive fibrosis and replacement
fibrosis are both types of cardiac fibrosis[2]. In
replacement fibrosis, normal cardiomyocytes are
replaced by scar tissue, while in reactive fibrosis,
stiffness and compliance are altered after MI
[3, 4]. When the production and degradation of
extracellular matrix(ECM) is imbalanced, cardiac
fibrosis develops[5,6], followed by the
accumulation of scar tissue, which leads to the
occurrence of major adverse cardiac events
(MACEs) including heart failure(HF), arrhythmia,
cardiogenic shock and even cardiac rupture[7-10].

TGF-β superfamily includes 33 members at least
and the TGF-β(TGF-β1, TGF-β2, TGF-β3)
subfamily plays a greater role in cardiac fibrosis
after MI. The receptors of TGF-β are type I
receptor (TβRI) and type II receptor(TβRII), on
the targeted cell surface, TGF-β ligands bind to
TβRII which recruits and phosphorylates TβRI,
and rephosphorylates receptor regulated SMAD
proteins (R-SMAD) binding to coSMAD. As a
transcription factor in the nucleus, R-
SMAD/coSMAD participates in the regulation of
target gene expression, cell growth,
differentiation, apoptosis, and homeostasis and
other cellular functions[11-16]. In addition to the
TGF-β Signaling Pathway, the angiotensin
pathway, mitogen-activated protein
kinase(MAPK) pathway, Notch pathway and
Wnt/β-Catenin pathway also participate in fibrosis
after MI[17, 18]. A major focus of this review is
on the effects, therapies and problems relating to
the TGF-β signaling pathway on cardiac fibrosis
after MI.

2. Effects

2.1 Cardiac fibrosis after myocardial infarction

As MI progresses, there are three stages: the
inflammation stage, the reparative stage, and the
maturation stage[11]. When cardiac cells
underwent ischemia, hypoxia, and necrosis, the
complement cascade and toll-like receptor (TLR)
are activated, resulting in the expression of

adhesion molecules, the generation of free
radicals, and the release of chemokine, cytokines
andtumor necrosis factor-α(TNF-α). This leads to
the migration of inflammatory cells (neutrophils,
mononuclear cells, macrophages) to the area of
infarction for the clearing of necrotic
cardiomyocytes, and ultimately the transformation
of macrophages into fibroblasts[12-14]. In the
reparative stage, the activation of TGF-β induces
the conversion of fibroblasts to myofibroblasts
and suppresses inflammation, cytokines, and
chemokines[11,12,15]. The myofibroblasts
promote the synthesis of ECM proteins and the
expression of alpha-smooth muscle actin (α-
SMA), resulting in the formation of fibrosis and
scar tissue in cardiac[16, 17].

2.2 TGF-β Signaling Pathway on Cardiac
Fibrosis

The expression of TGF-β increases in several
kinds of cardiovascular diseases: dilated
cardiomyopathy, idiopathic hypertrophic
cardiomyopathy, atrial fibrillation, myocardial
infarction, heart failure and even in
hypertension[18-23]. The increasing levels of
TGF-β1 serve as warning signs of cardiac
fibrosis[24, 25]. In mice injected with TGF-β ,the
level of collagen and granulation tissue
increased[26], which means TGF-β exacerbates
fibrosis. When rats received TGF-β1 gene
transformation, the lung fibrosis characterized by
the deposition of ECM proteins became more
severe[27]. However, when we selectively deleted
the receptor of TGF-β,the fibrosis of kidney
alleviated[28].

TGF-β plays a great role in cardiac fibrosis, but
its mechanism needs to be clarified. TGF-β
inhibits the production of cytokines and
chemokines, suppresses inflammation, promotes
angiogenesis, and alleviates the remodeling of left
ventricle[29-34]. On the other sides, TGF-β
stimulates the production of myofibroblasts,
which secrete ECM proteins and induce the
synthesis of protease inhibitors to inhibit the
degradation of the ECM proteins[35-39],
following with the cross-link of tropocollagen
[40, 41]. Dual effects of TGF-β on cardiac is
showed in Figure 1.
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Fig.1.The protective effect ofTGF-β on cardiac was mostly seen in the inflammatory stage: with the
activation of endotheliocytes and macrophages, the cytokine, E-selection and chemokine are inhibited,
promoting the angiogenesis, cardiac regeneration and improving cardiac remodeling. The detrimental effect
of TGF-β was seen in the fibrogenesis of myocardial: with the activation of TGF-β, fibroblasts convert to
myofibroblasts, which aggravates the deposition of ECM proteins and cross-link of tropocollagen,
ultimately leading to cardiac fibrosis.

3. Therapies

3.1 Gene therapy

Cardiovascular gene therapies target protein
expression, angiogenesis, and cardiac
regeneration[42]. Gene knockout, gene silencing,
and gene overexpression are the most commonly
used therapies[43]. When mice with MI
underwent IncRNA-Safe knockdown, the
formation of myofibroblasts and the secretion of
ECM proteins were indirectly decreased[44]. The
expression of TUG1 increased in TGF-β1 treated
rats,and the knockdown of TUG1 suppressed the
effects induced by TGF-β1 [45]. Despite Notch3
cDNA treatment alleviating cardiac damage,
Notch3 siRNA promoted cardiac fibrosis in
vivo[46]. In circular ribonucleic acid (circRNA)
010567 treated mice ,the structure and function of
the heart significantly improved ,and the
expression of TGF-β1 and Smad3 decreased
remarkably[47]. When circHNRNPH1 was
expressed in MI, it induced the expression of
Smad7 (an inhibitory protein of TGF-β signaling
pathway) and accelerated the degradation of TGF-

β. As a result, knocking out circular HNRNPH1
may be an effective therapy for cardiac
fibrosis[48]. By overexpressing long non-coding
RNAs (lncRNAs), N1LR, the death rate of
cardiomyocytes exposed to H2O2 was decreased,
inflammatory factors were decreased, and cardiac
fibrosis was alleviated by inhibiting of TGF-
β/smad[49]. Decrin gene treatment also improved
cardiac function and alleviated cardiac fibrosis in
AMI mice by decreasing Smad2/3 activation[50].
Silencing of KLF5 (Kruppel-like factor 5)
decreased cell and tissue damage by upregulating
miR27a and decreased TGF-β in MI [51].

MicroRNA gene therapy plays an increasingly
important role on cardiac fibrosis after MI, but the
specific mechanism is unclear. MicroRNA-214
(the miR-214) inhibited the TGF-β signaling
pathway in vivo and in vitro to prevent the
expression of fibrosis gene[52]. Meanwhile, miR-
130a, miR-34a, miR-202-3p, miR-212-5p, miR-
195-5p, MiR-208b/miR-21 and miR-208 exerted
their effects on fibrosis by regulating TGF-β
Signaling Pathway[53-58].
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3.2 Drug therapy

The traditional drugs for the secondary prevention
of coronary artery disease are anti-platelet drugs,
angiotensin-converting enzyme inhibitor/
angiotensin receptor blocker (ACEI/ARB),
statins, nitrates and β-receptor antagonists ,and
most of them play important role in cardiac
remodeling and the long-term prognosis after
MI[59-62]. The effect of ACEI/ARB is
undoubtable on alleviating the cardiac remodeling
and fibrosis, but the mechanism needs to be
further investigated, and here we just clarify the
relationship with TGF-β signaling pathway. In
ARB and ARB/ACEI combined treated rats, the
expression of TGF-β/Smad mRNA decreased,
indicating that the combined treatment is more
effective than ACEI treatment on alleviating the
cardiac remodeling[63]. Valsartan inhibited the
expression of TGF-b/Smad, HIF-1 a (hypoxia
inducible factor-1a) and proteins associated with
Ang II-mediated cardiac fibrosis in MI rats[64].
At the same time,the level of TGF‑β1 and TAK1
(TGF‑activated kinase 1) decreased significantly
in rats treated with simvastatin, and the
expression of the inhibitory protein Smad7
markedly increased, indicating that simvastatin
promoted the function and remodeling of the heart
via the TGF‑β signaling pathway[65].
N-Acetylcysteine also decreased the level of
TGF‑βtoo in MI[66].

For patients suffering from MI or HF, some new
drugs are used to improve their long-term
prognosis: sodium-dependent glucose transporters
2(SGLT-2), angiotensin receptor-neprilysin
inhibitor (ARNI) such as sacubitril/valsartan,
Dipeptidyl peptidase-4 (DPP-4) inhibitors, and so
on.[67-74]. Sacubitril/valsartan, combining
sacubitril and valsartan in 1:1 ratio ,is better than
valsartan in improving the structure and function
of cardiac, decreasing the expression of TGF-β1
and Smad3 protein by inducing the synthesis of
myofibroblast[75]. In rats after MI, ARNI and
ACEI combined decreased TGF-β expression
compared to ACEI alone[76]. In non-diabetic rats
treated with empagliflozin, cardiac fibrosis was
improved by inhibiting the TGF-β1/Smad3
signaling pathway[77]. DPP4 inhibitor also

alleviated cardiac fibrosis by inhibiting the
expression of TGF-β1[78].

3.3 Metabolic process regulation

As a new research field to improve cardiac
structure and function, the regulation of metabolic
processes has gained great attention in recent
years[79]. PGAM1(phosphoglycerate mutase 1), a
key aerobic glycolysis enzyme, plays critical role
in regulating molecular metabolic processes .The
overexpression of PGAM1 may increase the
TGF-β level and promote the inflammation [80].
In MI mice, deficiency of PGAM1 alleviated the
inflammatory, apoptosis and fibrosis of cardiac by
regulating TGF-β signaling pathway[81].
Similarly, inhibiting glycolysis weakened fibrosis
in other organs[82,83]. METTL3
(methyltransferase complex), involved in many
metabolic processes, the silenceing of which
would improve the fibrosis induced by TGF-β1,
may be a new targeted therapy in the future[84].
TNAP (tissue nonspecific alkaline phosphatase)
also played an important role in cardiac fibrosis
via the TGF-β signaling pathway[85]. SAHA
(Suberoylanilide hydroxamic acid) exerted its
cardiac protective effects by increasing the
expression of DUSP4[86].

3.4 Herbal medicine

Herbal medicine, also referred to as botanical
medicine, utilizes plants or plant extracts to treat a
wide range of diseases, and here we just put
emphasis on the mechanism of cardiovascular
diseases related with TGF-β signaling
pathway[87-89]. Many studies have verified the
cardiac protective effects of quercetin in MI[90,
91]. Ghadeer M. Albadrani[92] found quercetin
reduced the levels of Ang II, TGF-β and smad3 to
exert its cardiac protective effects in MI rats,
while Toshinobu Nakamura[93] found quercetin
exerted its antifibrotic effect but had no obvious
inhibition on the phosphorylation induced by
TGF-β in idiopathic pulmonary fibrosis. In MI
mice, puerarin also alleviated cardiac fibrosis by
regulating MCP (monocyte chemoattractant
protein)-1 and TGF-β1 signaling pathway[94].



Int. J. Curr. Res. Med. Sci. (2024). 10(2): 39-51

43

Ursolic acid downregulated the expression of
TGF-β, MMP-2(matrix metalloproteinase 2) and
MMP-9 in MI rats[95]. Artemisinin is an
extracted chemical product form artemisia,
discovered by Dr. Tu Youyou in 1972 in China
[96], which plays important role in antifibrotic in
many organs like lung, kidney, liver and so
on[96-100]. Artemisinin decreased the level of
TGF-β, MMP-2,MMP-9,and Type I collagen in
MI rats[101], which may be helpful on the
treatment of cardiac fibrosis. Oxymatrine,
resveratrol, zerumbone, lourerin B and calycosin
also protected against myocardial fibrosis by
modulating TGF-β/Smads signaling pathway in
MI rats[102-106], while  the specific mechanism
needs to be studied in the future.

3.5 The others therapies

The inhibitory protein, Smad7, inhibits the TGF-
β/Smads signal pathway by interfering  the smad
receptors[107]. Some people have clarified that
its role involves regulating macrophage
phenotypes, while the inhibitory effects were
relatively limited in inflammation and repair in
mice with MI [108]. Samd1 protected against
adverse remodeling by regulating the TGF-β
signaling pathway after MI[109]. And the
expression of ALK4(activin receptor-like kinase
4) may be a new targeted therapy on cardiac
fibrosis[110]. IL‑6(inhibitor interleukin 6) and
cytokine-Like 1 alleviated the cardiac fibrosis by
regulating the TGF-β signaling pathway [111,
112]. Vitamin D supplementation also alleviated
cardiac fibrosis by regulating TGF-β signaling
pathway in MI rats[113]. All of them may be
effective therapies for improving the cardiac
fibrosis after MI.

4. The problems

The therapies aimed at improving cardiac fibrosis
after MI are becoming increasingly popular as
research deepens, but the potential side effects
also need to be addressed. In mice treated with
anti-TGF-β antibodies, mortality increased and
the left ventricular structure worsened after
MI[114]. Aortic aneurysms and cardiac fibrosis
may be aggravated by interference with the TGF-
β/Smad signaling pathway[115, 116] and these

processes could also exacerbate asthma, cancer,
and skeletal development issues[117-119].
Therefore, the mechanisms still need to be
elucidated, and the widespread use of these
therapies still has a long way to go in the future.

5. Conclusions

The development of cardiac fibrosis has a close
relationship with TGF-β signaling pathway, while
the widely used drugs in clinical are still
relatively limited compared with the traditional
secondary prevention drugs like ACEI/ARB,
statin, and β-receptor antagonist, and even though
there are so many new therapy methods.
Fortunately, the safety of sacubitril/valsartan is
sure in improving the cardiac remodeling. Other
targeted therapies such as gene therapy, metabolic
process regulation, and botanical medicine are the
new hot areas and need to be further explored in
the future.
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