
Int. J. Curr. Res. Med. Sci. (2016). 2(6): 32-42

32

International Journal of Current Research in
Medical Sciences

ISSN: 2454-5716
www.ijcrims.com

Volume 2, Issue 6, June-2016

Original Research Article SOI: http://s-o-i.org/1.15/ijcrms-2016-2-6-5

Quantitative Structure Activity Relationship Study of MF-63
(Phenanthrene Imidazole Series) Derivatives for

mPGES-1 Inhibitory Activity

Shashank Misra1#, Himanshu Ojha1#, Rakesh Kumar2, Dinesh Gupta2 and
Kulbhushan Sharma1*

1Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi -110054,
India.

2Bioinformatics  Group, International Centre for Genetic Engg. And Biotechnology, Aruna Asaf Ali Mag,
New Delhi-110067, India.

*Corresponding author: Dr. Kulbhushan Sharma, Metabolic Cell Signaling Group Division of Radiation
Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi -110054, India.

E-mail: kulsinmas@gmail.com
# These authors contributed equally for the scientific work.

Abstract

Inhibition of COX-2 signaling has been one of the strategies to reduce occurrence and aggressiveness of many cancer
types. Due to several side effects associated with the direct targeting of COX-2, inhibition of various other key
players in COX-2 signaling like mPGES-1 is suggested. MF-63 is known to inhibit mPGES-1; a crucial component of
COX-2 signaling. In this study, a quantitative structure activity relationship (QSAR) was performed on eighteen
bioactive MF-63 (phenanthrene imidazole) derivatives. Initially 3224 molecular descriptors were obtained using
DRAGON software and finally a model was developed using five of them. For variable selection, Genetic Algorithm
(GA) method was used. The model was build using Partial Least Square Regression (PLSR). The most significant
model generated was having correlation coefficient (r2) of 0. 9421 cross validated correlation coefficient (q2) of 0.
7888, F-test value of 81.33, r2 for external test set (pred_ r2) 0.6011, coefficient of correlation of predicted data set
and (pred_r2se) 0.9706. Descriptors found suitable to construct the model included radial distribution function
(RDF110u), GETAWAY descriptor (R3u), Moran Autocorrelation descriptor (MATS5v) and MoRSE descriptors
(Mor28v and Mor31p). As these descriptors majorly belong to electronic and structural properties, our proposed
model indicated that these properties significantly contribute towards the potency of MF-63 derivatives. The current
study will aid in the future designing and development of more potent mPGES-1 inhibitors as anti-cancer agents.
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Introduction

Cancer, a complex process defined by
uncontrolled cellular growth and proliferation is a
major cause of death worldwide [1]. Decades of

research has demonstrated the link between COX-
2 expression levels, inflammation and many
cancer types. Thus, inhibition of COX-2 signaling
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has been one of the strategies to reduce
inflammation and occurrence and aggressiveness
of cancer. Earlier inhibitors of COX like NSAID
and COXIBs are reported to be associated with
several side effects[2]. Even the recent therapies
(siRNA, shRNA and miRNA) directed against
either COX or specifically COX-2 have several
snags associated. Hitherto, there has not been a
single universal therapeutic strategy that has
minimal COX-2 associated adverse side effects.

In addition to COX-2, there are numerous other
downstream molecules such as PGE2
(microsomal PGES {mPGES1} enzyme) and EP
receptors which may be targeted to minimize the
damaging side effects and thus may serve as a
broad spectrum, specific and long term
therapeutic cure for cancers caused through COX-
2/PGE2 mediated signaling (Fig. 1).

Fig. (1). COX-2 signaling pathway and cancer. The figure shows basic COX-2 signaling and its association
with cancer. Targeting of various steps like formation of PGH2 using traditional COX-2 inhibitors (NSAIDs
and COXIBs) and that of PGE2 formation i.e. PGES enzyme, using inhibitors like MF-63 have also been
shown.

The synthesis of PGE2 is catalyzed by the
presence of three specific PGE2 synthases
(PGES) of which mPGES-1 expression levels
have been found to be associated with various
human cancer types (colon, lung, penis, stomach,
head and neck) and could serve as a better
therapeutic target[3-11]. Published reports of
reduced clonogenic capacity of cell lines with
knocked down mPGES-1 using shRNA and
inhibition of xenograft tumor growth in nude mice
demonstrates it as a good drug target [12].

Reduced cell proliferation, attenuated matrigel
invasiveness and increased extracellular matrix
adhesion has also been observed when mPGES-1
was knocked down using siRNA in Lewis lung
carcinoma cells[13, 14]. The studies discussed
above evidently establish the role of mPGES-1 in
cancer progression in various cancer cells. The
studies mentioned signifies not only the
importance of mPGES-1 in the progression and
maintenance of cancer but also justify the
rationale for developing strategies that focus on
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chemopreventive targeting of this enzyme for
cancer suppression. Thus, compounds targeting
mPGES-1 have received considerable attention
recently and may be helpful in cancer therapy
(Fig. 1)[15]. These compounds may block PGE2
production and thus COX-2 signaling. Inhibition
of mPGES-1 activity by compounds of
phenanthrene imidazole series like MF-63 has
already been reported[16, 17]. MF-63, a JAK
kinase inhibitor is a potent and selective {>1000-
fold over human mPGES-2 and thromboxane
synthase (TXS)} inhibitor of human mPGES-1
enzyme. High potency and selectivity has been
found in cell-based assays under high plasma
protein conditions. Reduced PGE2 production in
LPS-stimulated human whole-blood (EC50 = 1.3
μM) without concomitant inhibition of TXB2
(EC50 > 40 μM) further demonstrate its
selectivity[18]. In Guinea pigs, oral
administration of MF63 suppresses PGE2
synthesis which led to efficient analgesic and
antipyretic effects, with reduced PGI2 as GI
toxicity usually encountered on NSAIDs
treatment[19]. Bioavailability of MF-63 was also
revealed in mice and rats but its mPGES-1
inhibitory activity was lacking in these species.
Intravenous administration of MF-63 had a short
half-life in rats and rhesus monkeys (1.5 and 1.3
h, respectively)[16]. Consequently, it becomes
imperative to design new molecules of this series
for improving the existing compound in terms of
enhanced potency of mPGES-1 inhibition,

favorable pharmacokinetic profile and reduced
toxicity.

Quantitative structure activity relationships
(QSAR) studies facilitates in relating the
biological activities of compounds to their
measurable physicochemical parameters which
have major influence on the compound’s activity
acting as drug [20, 21]. In QSAR studies, the
numerical representations of the molecular
structures i.e. molecular descriptors have been
stated as key players. Genetic Algorithm Partial
Least Square Regression (GA-PLSR) was
performed in order to investigate the correlations
between the calculated molecular descriptors of
MF63 {2-[6-chloro-9- 9(3 -hydroxy-3-
methylbutyl)-1H-phenanthro [9, 10-d] imidazol-
2-yl] benzene-1, 3-dicarbonitrile} derivatives and
their experimental minimum inhibitory
concentrations for mPGES-1 inhibition.

A QSAR model was build on the basis of
correlation which identified various key
properties. This model can be subsequently
exploited to identify derivatives with superior
potency and drug-likeliness by manipulating the
structural features in the imidazole moiety.

Materials and Methods

Data Set

The chemical structure of the basic phenanthrene
imidazole molecule has been shown in Fig. 2.

Fig. (2). Basic structure of tri substituted phenanthrene imidazole compound. The figure shows basic
structure of the compound whose derivatives have been used in the study. R1, R2 R3, R4 and R5 show the five
positions where the derivatives were varied in terms of substituents.
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Derivatives of the basic phenanthrene imidazole
compound were imported from pubmed
(http://pubchem.ncbi.nlm.nih.gov) and are
enlisted in Table 1. The chemical structure of the
basic phenanthrene imidazole molecule has been
shown in Fig. 2.The mPGES-1 inhibitory activity
of 18 compounds was expressed as IC50 values

(μM) i.e. the effective concentration of a
compound to achieve 50% inhibition of mPGES-1
enzyme activity and was used as the dependent
variable in the following QSAR study. The IC50

values were found to vary between the highest
values of 7.4 μM and the lowest value of 0.013
μM as shown in Table 1.

Table 1: Structure and mPGES inhibition activity of MF-63 derivatives (1-18) observed as
IC50 values (μM).

Compound
No.

R1 R2 R3 R4 R5 IC50 (μM)

1 H Cl
H H 0.42

2 Cl
H H 0.06

3 H Cl
H H 0.71

4 H H
Cl H 4.3

5
H H 1.1

6 Cl
H H 0.013

7 H H
H H 2.6

8 Cl
H H 0.027
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9 Cl
H H 0.034

10 H H Br H 7.4

11 H H H Br 5

12 Br Br H H 1

13 H Br H H 1.1

14 Br H H 2

15 Br H H 0.33

16 Br H H 0.28

17 Br H H 0.45

18 H H 2.3
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Computation of Molecular Descriptor.

Molecular descriptors were used to represent the
compound in order to build a QSAR model. All
of the compound structures were sketched using
Chem Draw Ultra 12 (Cambridge software). The
compounds were used as input into DRAGON
PLUS software (version 5.5, 2007) to calculate
molecular descriptors. 3224 molecular descriptors
including (a) 0D-constitutional descriptors; (b)
1D-functional groups counts, atom-centered
fragments; (c) 2D-topological
descriptors, connectivity indices, walk and path
counts, 2D autocorrelations,
information indices, edge adjacency indices,
topological charge index, Burden
eigenvalues, eigenvalue-based index; (d) 3D-
Randic molecular profiles, RDF descriptors, 3D-
MoRSE descriptors, geometrical descriptors,
WHIM descriptors[22], GETAWAY descriptors
[23]; (e) charge descriptors; and (f) molecular
properties were analyzed. Detailed calculation
procedure and the above mentioned descriptors
can be assed in Handbook of Molecular
Descriptors and references list of DRAGON
package respectively[24]. Initially, 1443
molecular descriptors were obtained on the basis
of exclusion of constant or near-constant and pair
wise correlation variables which were further kept
for sub- variable selection. Molecular descriptors
with correlation coefficient >0.99 were removed.

Division of data set into Training and Test Set.

The data set was divided into training set and test
sets in a 3:1 ratio randomly so as to build and
validate the QSAR models, both internally and
externally using VLifeMDS 4.0 software.

Feature Selection and QSAR Construction by
Genetic Algorithm-Partial Least Squares
(PLS) Regression Analysis.

Selection of the descriptors relevant to the
bioactivity was made using Genetic algorithm
(GA). GA performance controlling parameters
were laid down as: chromosome length,
5; population size, 10; number of generations,
5000; mutation probability, 0.05.PLS analysis
(popular regression technique) helps in relating

the dependent variables (Y) to several
independent (X) variables. PLS relates a matrix Y
of dependent variables to a matrix X
of molecular structure descriptors. Main aim
of PLS regression is to predict the activity
(Y) from (X) and to illustrate their common
structure[25]. An expansion of the multiple linear
regression (MLR) is PLSR. PLSR has been stated
as the least restrictive of the various multivariate
extensions of the multiple linear regression
models. This method is utilized as an
investigative analysis tool to choose suitable
predictor variables and to recognize outliers
before classical linear regression. In this
work, GA- PLSR method from VLifeMDS
software (version 4.0) was used to build the
relationship between bioactivity and structural
descriptors[26]. The statistical significance of
the QSAR model was adjudged on the following
statistical parameters: squared correlation
coefficient (r2), F-test (F-test for statistical
significance of the model), cross-validated
squared correlation coefficient (q2) and predicted
correlation coefficient for the external test set
(pred_r2).

Internal and external validation of GA-PLSR
model.

Models were validated internally and externally
using VLifeMDS 4.0 software. Finally, q2; a
value indicative of internal validation was
obtained. Similarly, pred_r2 was obtained after
external validation. The pred_ r2 value pinpoints
towards the predictive power of the QSAR model
for external test set.

Results and Discussion

The present study was designed to determine
structural features or to quote in terms of
quantitative structure activity relationship,
molecular descriptors that primarily influence the
IC50 values so that further potent and improved
MF63 derivatives may be designed and
synthesized.

QSAR Model.

Substitutions at position R1, R4 and R5 in the
basic phenanthrene imidazole molecule does not
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seem to significantly influence the potency
(inverse of IC50) as indicated from Table 1. In
contrast, position R2 and R3 seem to influence
potency the most. An in-depth analysis suggested
that the enhanced bulkiness of substituents at R2
position increases the potency of the compound.
This is evident from the comparison of the
substituents at R2 position among compounds
number 4, 5 and 6. The effect is maximally
observed in compound 6 and 8.

Similarly the substitution at R3 significantly
influenced the potency. It may be advocated by
comparing compound 1 and 3 where replacement
of cyanide group with halogens decrease the
potency from 0.42 to 0.71. Therefore, the
relationship between R3 substitution and potency
indicated that electronic properties have influence
over the potency.

During the QSAR modeling, the compounds were
divided into training (13) and test (5) sets through
the randomized method. 1443 structural
descriptors that were most relevant to
the IC50 values of the compounds were calculated
by DRAGON PLUS (version 5.5, 2007). These
descriptors were employed as inputs for GA
selection procedure.Next, PLSR was performed to
obtain the equation. QSAR models were proposed
on the basis of the evaluated q2 and pred_r2

values. A five-variable model was obtained using
GA-PLSR. The corresponding regression
equation generated was:

Y= -0.25RDF110u -6.14R3u +9.52MATS5v
+1.71Mor28v -6.52Mor31p +11.42… (Equation
1)

where u indicates polarizability unweighted; v
indicate volume and p indicate polarizability.

The important descriptors observed to influence
the inhibitory activity of the compounds in our
proposed model equation are (i) Moran
Autocorrelation descriptor MATS5v (Moran
autocorrelation-lag 5 /weighted by atomic van der
Waals volumes), (ii) MoRSE descriptor
Mor28v (signal 28/weighted by atomic Van der
Waals volumes) (iii)MoRSE descriptor Mor31p
(signal 31 /weighted by atomic polarizabilities)

(iv) R3u (R autocorrelation of lag
3/ polarizability unweighted), which is a
GETAWAY descriptor. The initial important
descriptors are subjected to atomic volumes
whereas the latter two are weighted by the atomic
polarizibility. The GETAWAY (Geometry,
Topology, and Atom-Weights Assembly)
descriptors are defined asmolecular descriptors
resulting from the Molecular Influence Matrix
(MIM). MoRSE descriptors (3D Molecule
Representation of Structures based on Electron
diffraction) are obtained from Infrared spectra
simulation using a prevalent scattering function
and Moran Autocorrelation descriptor is 2D
Autocorrelation indices. The remaining descriptor
RDF110u (Radial Distribution Function- 110
/ unweighted) is a Radial distribution function.

In comparison to other descriptors this descriptor
seems to least affect the inhibitory activity of
compound in the equation. Our model suggests
that the descriptors shown to affect the potency of
MF-63 derivatives majorly belong to structural
and electronic class. This further substantiates our
previous observations based on the data given in
Table 1. The QSAR model includes statistical
parameters such as r2 (squared correlation
coefficient), q2 (cross- validated correlation
coefficient), pred_r2 (predicted correlation
coefficient for the external test set), F (Fisher
ratio that reflects the ratio of the variance
explained by the model and the variance due to
the error in the regression). The terms r2 se, q2 se
and pred_r2 se are the standard errors terms for r2,
q2 and pred_r2.

A predictive and statistically significant QSAR
model should have values of r2 and q2 greater than
0.6 along with high values of the F-test, pred_r2

value>0.5 and smaller values for r2 se, q2 se and
pred_r2 se. Our model gave the following values:
correlation coefficient r2 (training set) = 0.9421;
q2=0.7888; F test value=81.33; r2 se= 0.6070 and
q2 se=1.1592.

The stastical parameters such as
pred_r2= 0. 6011 and pred_r2se = 0.9706 (test set)
that are essential for determing the prediction
ability of a QSAR model, was found to be
satisfactory[27].
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Thus, the QSAR model generated from the
equation looks steady and predictive.

Table 2 displays the predicted IC50 values
derived from the model.

Table 2. Predicted and Experimental inhibitory activity data of compounds studied.

Compound Status Predicted IC 50(μM) Experimental IC
50(μM)

1 Training 1.37898 0.42
2 Test 0.71832 0.06
3 Test 0.49026 0.71
4 Training 3.73657 4.3
5 Test 2.58223 1.1
6 Test -0.86846 0.013
7 Test 3.15509 2.6
8 Training 0.39756 0.027
9 Training 0.0374 0.034

10 Training 7.35649 7.4
11 Training 5.11032 5
12 Training 1.37905 1
13 Training 0.47417 1.1
14 Training 1.49583 2
15 Training 1.18673 0.33
16 Training 0.62292 0.28
17 Training -0.33813 0.45
18 Training 2.62748 2.3

The regression plot of the developed model has
been shown in Fig. 3. The plot suggests

predictability of our model in terms of the
experimental IC50 and predicted IC50 values.

Fig. (3). Plot of experimental IC50 values against the calculated values of IC50.

The proposed model would help in identifying the
factors that controls the potency of the
compounds on retrospective analyzing of the
descriptors used in the model. The standardized

regression coefficient value of each descriptor
highlights the relative importance of the
descriptors in determination of the activity of the
compounds.
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Conclusion

The results as discussed above connote that few
molecular descriptors in the QSAR model can
carve the biological activity of MF63 derivatives
with the structure of mPGES-1. A penta-
parametric regression equation with r2 =
0. 9421, q2 = 0. 7888 and pred_r2= 0.6011
validates our model. The descriptors belonging to
electronic and structural class appears to largely
influence the minimum inhibitory concentration
when descriptors in the proposed model are
analyzed. These descriptors seem to have
maximum effect on the generation of significant
QSAR model. The PLSR analysis signifies a good
correlation between structure and
activity. Therefore, in order to obtain a more
potent and specific inhibitor for mPGES-
1, (IC50) of the discussed derivatives can be
further developed by employing structural and
electronic properties like molecular volume and
polarizibility. The importance of this study could
be inferred in terms of the successful prediction of
the molecular properties that principally control
the anti-cancer activity of these phenanthrene
imidazole derivatives by QSAR method.
Continuing on the same line, the predicted anti-
cancer activity for recently designed phenanthrene
imidazole derivatives can also be calculated in-
silico which ultimately may save time and
valuable resources and as a result expedite drug
designing process. In order to explain
diminutively, the present study facilitates in
development of most effective biological
imidazole derivatives which may serve as
mPGES-1 inhibitor thus hampering COX-2
signaling and helping in the recovery from COX-
2 associated cancer.

List of abbreviation

PLSR, partial linear square regression; COX,
cyclooxygenase; mPGES-1, microsomal
prostaglandin E synthase-1; QSAR, quantitative
structure activity relationships; IC50, inhibitory
concentration 50.
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