Detection of Intestinal Metaplasia among Sudanese Patients with Chronic Gastritis by Using Combined Alcian Blue-PAS Technique

Mohammed Almosfa Kamal1, Assma Abdelwahab Ibrahim1, Aliaa Osman Mohamadein1 Sawsan Abdel Rahim2 Ibrahim Bakhit Yousif Elemam3, Awad Eljeed Abugooda Alobaid4.

1Department of Histopathology and Cytology, Faculty of Medical Laboratory Sciences, University of Khartoum-Sudan.
2Assistant Professor, Department of Pathology, Faculty of Medicine, University of Khartoum.
3Department of Histopathology and Cytology, Faculty of Medical Laboratory Sciences, Shendi University, Sudan.
4Department of Histopathology and Cytology, Medical Laboratory Sciences, Al-yarmouk College, Khartoum, Sudan.

Correspondence: Mohammed Almosfa Kamal, Department of Histopathology and Cytology, Faculty of Medical Laboratory Sciences, University of Khartoum-Sudan, E-mail: mosfa120mosfa@gmail.com

Abstract

Background and aim: Gastric cancer (GC) is one of cancer that leads to death in the world. GC is usually developed through a series of mucosal changes from non-atrophic gastritis to atrophic gastritis (AG), intestinal metaplasia (IM), dysplasia and adenocarcinoma. Helicobacter pylori (H.pylori) infection is an important initiating and promoting step of this gastric carcinogenesis. The current study conducted to identify the frequency of H.pylori and (IM) among Sudanese patients with Gastritis and to determine the role of combined PAS/ Alcian blue stain to detect intestinal metaplasia.

Materials and methods: This retrospective study was conducted on 100 formalin fixed paraffin embedded blocks of gastric biopsies with chronic gastritis, severity of gastritis was graded.

Results: Hundred formalin fixed paraffin embedded Blocks from patients with gastritis were enrolled, of which 64 (64%) were females and 36 (36%) are males. Age range from 14 to 80 years with median age of 47. The activity of gastritis was mild in 48%, moderate in 43% and severe in 8% of cases. Intestinal metaplasia was present in 10% (10/100). Concerning H.pylori infection as evaluated by H&E was reported in 49% of cases, among which 69% (34/49) of patients with chronic active gastritis were positive against 31% (15/39) of non-active chronic gastritis (p=0.000). H.pylori infection was related to the severity of gastric (p=0.01). H.pylori considered to be positive in antrum more than Fundus according to the site of biopsy a (p=0.003).
Seven negative intestinal metaplasia observed by H&E, appear to positive when reviewed by the alcian blue combined with PAS, so the IM reported to be positive in 3% and 10% by H&E and alcian combined with PAS respectively.

Conclusion: this study concludes that *H. pylori* are most frequent cause of chronic gastritis. A significant cases of IM were detected using combination of alcian blue-PAS stain among patients with chronic gastritis.

Keywords: Helicobacter pylori; Gastric cancer; Intestinal metaplasia; Alcian blue and PAS.

Introduction

Gastric cancer (GC) is a major contribute to mortality worldwide [11]. The incidence of this cancer has declined over the past decades but is still the fourth most common cancer and second leading cause of cancer related death worldwide [2,3]. Gastric cancer has two types: intestinal and diffuse types. The pathogenesis of the intestinal type of gastric cancer is related to precursor lesions such as chronic atrophic gastritis, intestinal metaplasia (IM), and adenoma/dysplasia. However, the pathogenesis of the diffuse type of gastric cancer is not well defined [4]. Chronic gastritis, especially that associated to *Helicobacter pylori* (*H. pylori*) predisposes to the intestinal form of gastric carcinoma [5,6]. *H. pylori* infection is associated with severe gastritis, chronic atrophic gastritis, and IM, as well as gastric cancer [5,8]. Severe atrophy accompanying IM is related to a particularly high risk in *H. pylori* infected patients [9]. Some clinical studies reported that IM improves or did not progress after *H. pylori* eradication therapy [10,11]. As a result, *H. pylori* eradication is one of the most promising approaches in gastric cancer prevention [12]. Intestinal metaplasia of the gastric mucosa is a relatively frequent precancerous lesion for gastric cancer [13,5]. Intestinal metaplasia refers to the progressive replacement of the gastric mucosa by epithelium having the light and electronic microscopic features of intestinal epithelium of either small or large bowel type. Based on the cell differentiation and mucins secretion, three types of IM can be recognized in the stomach, i.e., Type 1, Type 2, and Type 3. IM has been observed in various gastric lesions such as gastric cancer, gastric ulcer, and atrophic gastritis [14]. Patients with gastric intestinal metaplasia (GIM) may have a greater than 10-fold increased risk of gastric cancer than the general population. GIM is recognized as a premalignant condition that may be the result of an adaptive response to environmental stimuli such as *H. pylori* infection, smoking, and high salt intake [15].

Materials and Methods

This study was conducted at Soba university hospital, during the period from January to December 2016. (100) formalin fixed paraffin embedded Blocks of gastric biopsies with chronic gastritis were included in this study. All blocks are cut into (3 microns) by using Leica bio system microtome. And spread in water bath then put in coated glass slides, then all sections deparaffinized in xylene and rehydrated through descending grade of alcohols, then water. All sections were stained by combined alcian blue–PAS for mucins demonstration as followed: the hydrated sections were stained in alcian blue for 15 minutes and wash with tap water, after that oxidize with periodic acid for 5 minutes and wash with deionized water, then cover the section with Schiff reagent for 30 minutes and wash in running tap water for 5 minutes. Lastly dehydrate in ascending grade of ethanol, then clear with xylene and mount with Distrene Polystyrene Xylene (DPX).

The obtained data analyzed using SPSS computer program, frequency, means; cross tabulation and chi-square values were calculated. P value <0.05 was considered as statistically significant.
Results

100 formalin fixed paraffin embedded blocks from patients previously diagnosed with gastritis were included in the study, their age range from 14 to 80 years with medium age of 47 years, 64% were females and 36% males, as illustrated in (Fig 1)

Figure 1: the frequency of the gender among study population.

Considering the degree of activity of chronic gastritis, it was mild in 48% of patients with chronic gastritis, moderate in 43%, and severe in 8% as shown in (Fig 2).

Figure 2: the frequency of the degree of activity of chronic gastritis.
Helicobacter pylori infection in chronic gastritis.

The relation between *H. pylori* infection and chronic gastritis is portrayed on (Fig 3), 49% of patients with chronic gastritis were *H. pylori* positive against 51% who were *H. pylori* negative, among which 69% (34/49) of patients with chronic active gastritis were positive against 31% (15/49) of non-active gastritis (p = 0.000) as shown in (Table 1). The activity of chronic gastritis was mild in 48%, moderate in 43% and severe in 8% of cases, and the severity of chronic gastritis was related to the presence of *H. pylori* infection (p = 0.01), as demonstrated in (Table 2). 10% of gastric intestinal metaplasia were reported in patients with chronic gastritis as described in (Fig 4).

![Figure 3: the frequency of *H.pylori* infection among study population.](image)

Table 1: the frequency of *H.pylori* infection according to the activity of gastritis

<table>
<thead>
<tr>
<th>Gastritis</th>
<th>H. pylori results</th>
<th>Total</th>
<th>p. value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td>34</td>
<td>5</td>
<td>39</td>
</tr>
<tr>
<td>Non active</td>
<td>15</td>
<td>46</td>
<td>61</td>
</tr>
<tr>
<td>Total</td>
<td>49</td>
<td>51</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 2: the frequency of *H.pylori* infection according to the severity of gastritis

<table>
<thead>
<tr>
<th>Severity of Gastritis</th>
<th>H. pylori results</th>
<th>Total</th>
<th>p. value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
<td></td>
</tr>
<tr>
<td>Mild</td>
<td>15</td>
<td>34</td>
<td>49</td>
</tr>
<tr>
<td>Moderate</td>
<td>29</td>
<td>14</td>
<td>43</td>
</tr>
<tr>
<td>Severe</td>
<td>05</td>
<td>03</td>
<td>08</td>
</tr>
<tr>
<td>Total</td>
<td>49</td>
<td>51</td>
<td>100</td>
</tr>
</tbody>
</table>
The correlation between *H. pylori* infection and the site of biopsy.

H. pylori considered to be positive in antrum more than Fundus according to the site of biopsy a (p = 0.003), as demonstrated in (Table 3). The frequency of intestinal metaplasia of the stomach with respect to age and gender in gastritis. Seven negative intestinal metaplasia observed by H&E, appear to positive when reviewed by the alcian blue combined with PAS, so the IM reported to be positive in 3% and 10% and alcian combined with PAS respectively as demonstrated in (Fig 5).

Table 3: the frequency of *H. pylori* infection according to the site biopsy

<table>
<thead>
<tr>
<th>Site of biopsy</th>
<th>H. pylori results</th>
<th>Total</th>
<th>p. value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
<td></td>
</tr>
<tr>
<td>Funus</td>
<td>14</td>
<td>30</td>
<td>44</td>
</tr>
<tr>
<td>Antrum</td>
<td>31</td>
<td>15</td>
<td>46</td>
</tr>
<tr>
<td>Both</td>
<td>04</td>
<td>06</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>49</td>
<td>51</td>
<td>100</td>
</tr>
</tbody>
</table>
Discussion

In the model of gastric carcinogenesis, *H. pylori* plays a pivotal role in causing chronic active gastritis. Chronic *H. pylori* induces gastritis and may progress over years through the sequential stages of atrophic gastritis, IM, and dysplasia to gastric adenocarcinoma [16,5]. An important risk factor for gastric cancer development is the presence of premalignant changes of the gastric mucosa, such as IM, atrophy, and dysplasia [7,12,17].

In Sudan, information about the prevalence of *H. pylori* infection is very patchy, and there is only one study which showed high prevalence (80%) of *H. pylori* infection among patients with symptoms of gastritis, 56% with duodenal ulcer, while 60% with duodenitis and 16% apparently look normal [18].

The prevalence of gastric IM and atrophy in the general population is known to vary around the globe, mostly depending on *H. pylori* status [19,20]. IM is a well-known risk factor for the development of gastric cancer [17,20]. Diagnosis of atrophic gastritis, IM, and dysplasia is often ignored in routine clinical practice [21].

According to some authors, complete IM is associated with a lower risk of gastric cancer; therefore, in the absence of other risk factors for gastric cancer, patients with complete IM do not need long-term endoscopic surveillance [22]. Due to the high prevalence of gastric cancer and *H. pylori* infection in our region, we strongly recommend endoscopic surveillance of gastric IM without paying attention to subtype.

In our study the frequency of gastric IM was 10%. The prevalence of gastric IM in the general population remains difficult to ascertain due to the asymptomatic nature of the lesion. There is a wide variation in the prevalence of gastric IM depending on the different methods used in studies and particularly the prevalence of *H. pylori* infection in the region [20,23]. Sonnenberg et al. conducted a large retrospective study of 78,985 patients undergoing EGD with biopsy across the United States and found that the prevalence of gastric IM was 7% [24].

In our study, we observed that gastric IM was higher in older than in younger patients. Several studies revealed that age ≥50 years was an independent risk factor for IM, which is consistent with previous studies reporting that the incidence of IM increases with age [25,24,5].
The positive rate of *H. pylori* infection in Chronic gastritis lesions in Sudan was 49%, also the results of this study indicated that H. Pylori infection is associated to the severity of chronic gastritis (P value was 0.01). Globally, *H. pylori* infection is responsible for 80% of atrophic gastritis and is related to the development of precancerous conditions of the stomach and their progression to carcinoma [26, 28, 29,30]. The association between *H. pylori* infection and atrophic gastritis or intestinal metaplasia increases the risk of gastric cancer to five - six-fold [27,31]. *H. pylori* infection is both related to the severity of histological lesions and the activity of chronic antral gastritis [28,31,32].

Regarding the comparison between H&E and combined alcian blue–PAS in the diagnoses of IM among chronic gastritis biopsies, the last technique appear to be more sensitive, as alcian blue was reactive with all IM.

In conclusion: Routine and combined alcian blue with periodic acid Schiff reagent are recommended for the detection and diagnosis of IM *H. pylori* one of the most important causes of chronic gastritis as well as pre-neoplastic gastric lesions. We found that the frequency of complete types of IM was 10% in patients with chronic gastritis, which is statistically significantly with the severity and the activity of chronic gastritis.

Recommendations: Routine use of combination of Alcian blue-PAS stain in Gastric biopsies for more efficient detection of intestinal metaplasia.

Acknowledgements

This study was supported by histopathology staff of Soba University Hospital. The authors would like to thank Dr. **Mahmoud Ibrahim Osman** and Dr. **Hisham Mohamed Ahmed**. For assistance and proofreading of the manuscript.

References

How to cite this article:
DOI: http://dx.doi.org/10.22192/ijcrms.2017.03.06.011