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                               Abstract 

Therapeutic drug monitoring (TDM) is such an area that focuses on ensuring the right doses are given to reach the 
maximum therapeutical efficacy and the lowest possible adverse effects in precision medicine. Until now, TDM was 
primarily based on classical pharmacokinetic (PK) and pharmacodynamic (PD) models, requiring extensive 
laboratory monitoring and manual adjustments for behavioral assessment, eventually perfected by artificial 
intelligence (AI) and machine learning (ML). The demand for real-time, data-derived doses and clinical decision 
support is fulfilled by TDM enabled by AI and ML technologies. Models based on AI use the enormous databases of 
patients such as drug metabolism combined with genetic and real-time physiological factors for fine dosing. The 
machine learning algorithms such as neural networks, Bayesian models, and decision trees have shown significant 
application in levels of optimising biomolecules over time across multiple therapeutic areas including antimicrobial 
therapy, antiepileptic drugs, immunosuppressants, and oncology treatments. In addition, the AI-based Clinical 
decision support systems also help personalize dosage through EHR integration into the system and hence improve 
treatment outcomes and reduce drug toxicity. However, these advances in technology do face various challenges such 
as poor quality of data, non-interpretability of models, regulatory challenges, and several ethical dilemmas on the 
generalization of these technologies in the clinical environment. This article reviews the contributions made by AI 
and ML in TDM, their applications, benefits, limitations, and future scope in furthering precision medicine. 
 
Keywords: Therapeutic Drug Monitoring (TDM), Artificial Intelligence (AI), Machine Learning (ML), Clinical 
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Introduction 
 
TDM is a currently very important clinical 
practice of measuring the drug concentrations in a 
blood sample in a patient to the effective 
prescribing for therapeutic benefit with minimized 
toxicity. It is very important for drugs that have a 
low therapeutic index, where a minor change in 
drug concentration may result in failure of the 
treatment and sometimes lead to severe adverse 
effects. TDM includes the managing of 
medications such as antibiotics (vancomycin, 
aminoglycosides)- antidepressants (amitriptyline)- 
some anticoagulants (warfarin)- 
immunosuppressants (tacrolimus, cyclosporine)- 
antiepileptics (such as phenytoin and valproate), 
in which an accurate dose is very important. Then 
taking into account individualized specific 
elements relating to the patient, such as age, 
weight, renal and hepatic function, genetics, and 
possible drug interactions, TDM has a defining 
role in the field of precision medicine, directing 
treatment strategies toward treating patients rather 
than following generic dosing regimens. It allows 
drug action to be optimized in a personalized way, 
reducing side effects and improving patient 
outcome, and thus TDM becomes a key tool in 
modern clinical pharmacology and personalized 
health care.[1,2,3] 

 

Key principles of Therapeutic drug 
monitoring (TDM) 
 
1. Individualized Dosing 
 
A response to any medication is unique with 
respect to each patient, owing to variations in age, 
mass, organ function, genetic differences, and 
coexistence of diseases. Therefore, TDM 
individualizes dosing on grounds of these 
variables in order to achieve maximum 
therapeutic effect with minimum toxicity. 
 
2. Therapeutic Range Targeting 
 
The TDM consists of keeping the concentrations 
of drugs within a defined therapeutic window, 
that is able to dose, inhibit the action of toxic 
effects. Drugs having a narrow therapeutic index 

(NTI) should be closely monitored to avoid 
underdosing (ineffectiveness) or overdosing 
(toxicity). Examples include warfarin, lithium, 
and digoxin. 
 
3. Timing of Sample Collection 
 
Proper timing of blood sample draw in TDM is 
crucial to achieving accurate results. Peak levels 
and trough levels must be measured at appropriate 
intervals so that dose adjustments can be made. 
Any discrepancy in sampling time will mislead 
and might lead to an unwanted dose change. 
 
4. Integration of Pharmacokinetics and 
Pharmacodynamics 
 
A drug's absorption, distribution, metabolism, and 
excretion (ADME) have significant roles in dose 
optimization. In addition, pharmacodynamic 
effects such as drug receptor interactions and 
variability in responses present a further 
dimension to therapeutic outcome. Thus, TDM 
combines these aspects in providing 
individualized treatments. 
 
5. Clinical Interpretation and Decision-Making 
 
The TDM requires the interpretation together with 
the patient clinical condition, laboratory findings, 
and other drug interactions. therefore, physicians 
and pharmacists analyze drug levels and disease 
condition changes to treatment effects in 
adjustment of therapy while improving the patient 
safe and efficacy.[4,5,6] 

 

Current methods used for 
Therapeutic drug monitoring 
(TDM) 
 
1. Immunoassays 
 
Immunoassays are increasingly used in so-called 
toxicological testing and therapeutic drug 
monitoring in clinical laboratories because of 
rapid turnaround times and the ease of 
automation. The method normally depends on 
antigen-antibody reactions for the detection and 
quantitation of drugs in biological fluids.  
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Examples of such immunoassays include ELISA, 
RIA, and FPIA. Although immunoassays are very 
sensitive, often a lack of specificity because of 
cross-reactivity with structurally similar 
compounds can lead to false-positive or false-
negative results. 
 
2. High-Performance Liquid Chromatography 
(HPLC) 
 
HPLC chromatography is often used for 
Therapeutic Drug Monitoring, offering excellent 
specificity and precision. It, therefore, separates 
drug molecules based primarily on specific 
chemistries with accurate quantification. HPLC is 
suitable for monitoring the complex metabolism 
of drugs such as anticonvulsants and 
immunosuppressants. However, HPLC is 
expensive, laborious, and slow when compared 
with immunoassays. 
 
3. Liquid Chromatography-Mass 
Spectrometry (LC-MS/MS) 
 
The gold standard method for TDM is LC-
MS/MS, which is a method with outstanding 
sensitivity and specificity and the ability to 
analyze multiple drugs at the same time. It 
couples liquid chromatography (LC) with mass 
spectrometry (MS) to identify and quantify drugs 
by minimal cross-reactivity. LC-MS/MS is used 
to monitor drugs across the spectrum of 
antibiotics, anticancer therapies, immunotherapy, 
and psychoactive medications, but costs and 
technical complexity limit its routine laboratory 
use in the smaller lab environment.[7,8,9] 

 

4. Gas Chromatography-Mass Spectrometry 
(GC-MS) 
 
GC-MS is another highly specific and sensitive 
technique used in TDM, particularly for volatile 
GC-MS is one of the other remarkably specific 
and sensitive techniques employed in TDM with 
regard to volatile compounds such as antiepileptic 
and anesthetic drugs. Molecular investigation 
offers a greater advantage in forensic toxicology 
and drug abuser monitoring. However, it requires 
a lengthy sample preparation process, which 
limits its applicability in routine clinical TDM 
use. 

 
 
5. Capillary Electrophoresis (CE) 
 
Capillary electrophoresis is a promising, 
emerging, and latest technique in TDM that has 
the ability to effectively separate drug molecules 
according to the charge and size by using an 
electric field. It is also a method that requires only 
very little amounts of sample volumes, has very 
high efficiency, and also very much high 
resolution. One of the major setbacks of this 
technique is that it has not yet been widely 
applied in routine clinical practice because the 
instruments, as well as training, are provided but 
not readily available to health care providers. 
 
6. Spectrophotometric Methods 
 
Ultraviolet-visible (UV-Vis) and infrared (IR) 
spectrophotometry are sometimes used in TDM 
for simple drug concentration measurements. 
These methods are cost-effective and easy to use 
but lack the sensitivity and specificity required for 
precise drug monitoring, making them less 
suitable for drugs with narrow therapeutic 
windows.[10,11] 

 

Challenges in traditional TDM 
approaches 
 
1. Interpatient and Intrapatient Variability 
 
Genetic, organ functional, co-morbidity, as well 
as lifestyle variability contribute to the difficulty 
of having similar levels of therapeutic efficacy. 
Sometimes patients, though with the same 
conditions, often require different doses, while 
changes in the metabolism of an individual with 
time can add further complexity to the changing 
dose, thus increasing the chance of underdosing 
and an overdose and, therefore, increased 
frequency of monitoring and individualized 
treatment. 
 
2. Nonlinear and Unpredictable 
Pharmacokinetics 
 
Phenytoin is yet another drug exhibiting nonlinear 
pharmacokinetics, which means that small dose 
changes may result in disproportionation in  
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concentration changes. Predictable 
pharmacokinetics become even more complicated 
when altered protein binding, drug-drug 
interactions, enzyme induction, and enzyme 
inhibition interplay with the changes in 
concentration. The long half-life of digoxin adds 
to the still greater complication of delay in 
achieving steady-state, making highly exigent 
requirements for sampling times and expertise in 
order to avoid toxicity and subtherapeutic 
concentrations. 
 
3. Dependence on Clinician Expertise 
 
Interpreting TDM  results requires specialized 
pharmacokinetic knowledge. Timing, metabolism 
considerations, or adjustments in doses can lead 
to the non-fulfillment of treatment. One possible 
constraint faced by some settings is limited 
availability of trained personnel for effective 
monitoring. Misinterpretation of results could 
result in toxicity or therapeutic failure; therefore, 
there is a need for automated decision-support 
tools to work on decreasing the burden of 
clinicians and improving accuracy. 
 
4. Sample Collection and Timing Errors 
 
According to proper TDM principles, blood 
samples must be accurately collected during the 
trough or peak level, as required for the particular 
drug. Any improper timing and handling of blood 
samples can lead to erroneous dose adjustments, 
thus harming the patient. Inconsistent collection 
practices across different healthcare environments 
are variables that render the results invalid. 
Training should be emphasized for the staff in 
order to standardize practices and alleviate 
sampling and processing errors. 
 
5. Laboratory and Turnaround Time 
Limitations 
 
Classic therapeutic drug monitoring (TDM) 
methods involve pharmacokinetic laboratory 
assessments, which usually do not provide results 
in time for timely dose adjustments. In the 
intensive care unit, a study that takes long to 
report results could mean the difference between 
prolonged toxicity or therapeutic failure.  

 
 
Differences in laboratory techniques and reporting 
from institution to institution lower the reliability 
of results and hinder comparisons between 
institutions and clinical decisions. 
 
6. Cost and Resource Constraints 
 
The lab equipment, trained personnel, and 
standardized set of tests required for TDM render 
it resource intensive. In settings where resources 
are low, TDM cannot be effectively applied for 
timely and accurate guidance on dose 
adjustments, necessitating the continual 
assumption of doses, which increases the chances 
of suboptimal therapy. Cost may be another factor 
forbidding the use of TDM on a wider scale; 
frequent monitoring and specialized tests may not 
be affordable.[12,13,14] 

 

The role of artificial intelligence 
(AI) and machine learning (ML) in 
optimizing TDM 
 
Artificial intelligence (AI) and machine learning 
(ML) thereby change therapeutic drug monitoring 
(TDM) from being static tools to being dynamic 
predictive and adaptive solutions for the 
optimization of drug dosing. Currently, AI models 
analyze longitudinal patient databases, capturing 
all demographics, genetics, comorbidities, 
laboratory values, real-time drug concentration 
levels, and so forth, to predict advantages to the 
specific patient dose in an evidence-based model. 
For example, machine learning algorithms-such 
as neural networks, support vector machines, and 
Bayesian forecasting models-find use in 
improving pharmacokinetic-pharmacodynamic 
modeling which could potentially enable on-
demand adjustment of dosage from a minimum of 
blood sampling requirements. Their clinical 
applications are also within CDSSs, which 
integrate TDM data into electronic health records 
and recommend customized doses to providers. 
With the help of AI, precision medicine also 
incorporates identification of patient subgroups to 
whom innate biological variations or different 
disease states would ideally require different 
dosing strategies. Thus, while automating these 
complicated calculations, they reduce clinician  
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workload and enhance accuracy in dosing, 
making a more efficient and personalized 
approach available in TDM, ultimately improving 
patient outcomes while decreasing adverse drug 
reactions.[15,16] 

 

AI and ML techniques used in 
Therapeutic drug monitoring 
(TDM) 
 
AI and ML indeed brought a major alteration in 
Therapeutic Drug Monitoring (TDM), creating 
the possibility for accurate, data-based, and 
adaptive doses of drugs. Historically, TDM has 
been entirely based on population 
pharmacokinetics (PK) and pharmacodynamics 
(PD) that rarely consider individual variations. 
New AI/ML techniques combined some vast 
specific data-patient details, such as genetic, 
metabolic, and physiological parameters, to 
recommend personalized drug doses, thus 
increasing the efficacy and decreasing toxicity, 
and maximizing better clinical decision-making. 
 
Supervised Learning (Regression & 
Classification Models) 
 
Supervised learning algorithms can be useful for 
TDM in predicting drug concentration levels, 
determining the risk factors for adverse drug 
reactions (ADRs), and optimizing dosing 
regimens. Linear and logistic regression models 
helped define relationships between drug dose 
and serum concentration, as well as other patient-
specific features, such as renal and hepatic 
function. Random forests and decision trees are 
examples of patient features the age, weight, 
coexistences, and genetic markers to classify the 
patients into different risk categories and offer 
them personalized dosing approaches. Through 
the collection of patient data, these models will 
tend to improve gradually and allow for real-time 
optimization of treatment regimens.[17,18] 

 
Unsupervised Learning (Clustering & Pattern 
Recognition) 
 
The techniques in unsupervised learning are 
especially apt for discovering hidden patterns in  

 
 
massive pharmacokinetic databases. In this way, 
K-means clustering and principal component 
analysis (PCA) could group patients based on the 
metabolistic behavior of a drug in order to 
identify subpopulations that respond differently to 
that drug. For example, clustering algorithms are 
used in immunosuppressive drug therapy to 
categorize transplant patients based on the 
absorption and clearance rates of drugs for 
individual adjustments of drug dosage. Automatic 
recognition of drug response patterns for patients 
can enhance the precision of TDM, thus helping 
to avoid subtherapeutic or toxic drug levels. 
 
Deep Learning (Neural Networks & 
Reinforcement Learning) 
 
Deep-learning models mainly, the artificial neural 
networks, study the complex interactions between 
drug metabolism, genetic variations, and 
physiological parameters. These models have 
been effectively used for predicting drug-drug 
interactions and drug dosing in cancer 
chemotherapy according to tumor characteristics. 
Dosing strategies in adaptive dosing are 
significantly useful under reinforcement learning 
(RL) since they continually learn dosing strategies 
based on real-time patient feedback. The RL has 
shown promise in adapting insulin doses 
dynamically in diabetes management and 
anticoagulant therapy, leading to optimal 
therapeutic effectiveness and minimal associated 
risk.[19,20] 

 
Natural Language Processing (NLP) for 
Clinical Data Analysis 
 

From unstructured medical data such as electronic 
health records (EHRs), clinical notes, and 
pharmacovigilance reports, Natural Language 
Processing (NLP) can extract useful insights. AI-
based NLP algorithms explore patient histories 
and laboratory reports, and real-world evidence to 
alert the users to suspicious adverse drug 
reactions (ADRs) and drug-drug interactions 
(DDIs). Thus, for example, a signal of 
nephrotoxicity in patients receiving vancomycin 
or hepatotoxicity in patients undergoing 
chemotherapy can be automatically derived, 
allowing timely intervention and higher 
medication safety. 
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As a whole, these AI and ML techniques have 
been extremely useful to the art of TDM 
sophistication and will aid clinical decisions in 
improving patient safety and reducing the risks 
for optimizing drug efficacy. Here TDM will 
advance from standard dosing recommendations 
for drugs to individualized regimens, a significant 
step forward in precision medicine.[21,22] 

 

AI/ML integration in Therapeutic 
drug monitoring (TDM) 
 
Therapeutic drug monitoring or TDM defines 
precision medicine by measuring the 
concentration of drugs in the body of a patient for 
optimizing an appropriate drug dose for 
maximizing efficacy with minimal toxicity. TDM 
is mostly pharmacokinetic dependent and, at 
times, pharmacodynamic-related, when combined 
with the clinical expertise of the prescriber, who 
might use these models to develop effective 
alterations in dosing levels. However, such dose 
optimization is often complicated due to inter-
individual variability owing to genetic, 
physiological, and environmental factors. The 
emergent applications of Artificial Intelligence 
(AI) and Machine Learning (ML) have a 
transforming capacity in TDM by imparting 
enhanced predictive capacity, automating 
processes, and individualized treatment 
recommendations. These applications of AI/ML 
in TDM will thus be the future for more accurate 
doses, better safety for patients, and fewer adverse 
drug reactions.). 
 
1. AI-Driven Dose Optimization and 
Personalization 
 
The optimization of AI-assisted doses is 
converting the new paradigm into therapeutic 
drug monitoring (TDM), where the custom dosing 
of drugs for patients is evaluated according to the 
methods of machine learning (ML) and predictive 
analytics. Current dosing practices use a fixed 
guideline for dosage that often tends to overlook 
the inter-individual variability caused by genetics, 
metabolism, organ function, and comorbidities. In 
contrast, AI optimization begins by considering 
and analyzing vast amounts of patient background 
data, including demographic information,  

 
 
laboratory results, and pharmacogenomic 
markers, towards real-time dynamic adjustment of 
dosing for an individual patient. ML algorithms 
such as deep neural networks and reinforcement 
learning keep updating their predictions by 
learning from constantly incoming streams of 
clinical data, thus ensuring the maintenance of 
optimum drug levels with the least risk of 
toxicity. This AI-influenced dosing paradigm is 
an indispensable part of the therapeutic 
management of narrow therapeutic index drugs 
such as anticoagulants, immunosuppressants, and 
chemotherapeutics, for which even the slightest 
dose shifts can cause life-threatening adverse 
effects. AI-powered real-time monitoring systems 
also implement wearable biosensors, which can 
follow drug metabolism and automatically adjust 
dosing, thereby embodying a precision medicine 
principle that promotes safety and therapeutic 
effectiveness.[23,24] 

 

2. AI-Based Pharmacokinetic (PK) and 
Pharmacodynamic (PD) Modeling 
 
It is also important that AI modeling and 
prediction include features differentiating among 
populations and geographical sites, as well as 
prediction in relation to time, particularly in 
safety and efficacy trials. Population-based drug 
response has always been the strain-and-brain-
typical fallacy of new open-ended static equations 
used in PK/PD studies.Machine learning and deep 
learning add clinical interpretation to model 
prediction using extensive clinical datasets. From 
the population-wide database including genetics-
an unbiased acquisition-and speed of metabolism 
to disease-related parameters, these models now 
predict. 
 
Drug concentration-time profiles can be precisely 
predicted through the usage of machine learning 
algorithms that process enormous patient data, 
rather than relying on traditional compartmental 
models. These superb tools of AI can simulate 
multifaceted drug interactions, discover nonlinear 
relationships in parameters of PK/PD, and modify 
the dose regimens continuously. For example, AI-
based pharmaceutical kinetics modeling in 
antibiotics such as vancomycin helps adjust the 
dose regimens, thereby lessening the effects of  
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nephrotoxicity while still achieving the efficacy in 
critically ill patients. Furthermore, PD modeling 
powered by AI predicts individual patient drug 
responses, which can improve precision dosing 
strategies in oncology, neurology, and cardiology. 
 
It incorporates AI-induced benefit into the PK/PD 
modeling personalized medicine: trial-and-error 
dose approaches are thus reduced. AI models can 
learn and improve continuously with the help of 
fresh patient data: thereby refining prediction and 
enhancing therapeutic results. Yes, it advances 
clinical decision-making, reduces adverse effects, 
and improves the effectiveness of drug use. All 
this will take pharmacotherapy an additional step 
towards the future of patient-centricity.[25,26] 

 

3. Predictive Analytics for Adverse Drug 
Reactions (ADRs) 
 
Among the many concerns in Therapeutic Drug 
Monitoring is the occurrence of adverse drug 
reactions (ADRs), which add to morbidity and 
mortality in vulnerable populations. 
Advancements in AI put predictive analytics at 
the forefront in helping identify patients at 
elevated risk of drug-related toxicities by mining 
historical information of TDM, clinical 
parameters, and genetic predispositions. 
Therefore, decision tree algorithms and deep 
neural networks assess a patient’s medication 
history, laboratory results, and comorbid 
conditions to predict the likelihood of ADR 
occurrence. For example, AI models have been 
built to predict the nephrotoxic potential of 
aminoglycosides or vancomycin, hence allowing 
a proactive adjustment of doses by clinicians. In 
addition, ML-based pharmacovigilance systems 
continuously screen EHRs and real-world 
evidence for emerging safety signals, 
guaranteeing improved response to adverse drug 
events.[27,28] 

 

4. Automated Data Interpretation and Pattern 
Recognition 
 
These days, artificial intelligence-enabled 
automated data interpretation and pattern 
recognition are revolutionizing clinical decision-
making by rendering insight from complex and  

 
 
voluminous datasets. Traditional methods of data 
analysis mostly depend on manual processing, 
posing both long turnarounds and plenty of 
opportunity for human error. Deep learning and 
natural language processing (NLP)-based AI 
algorithms accurately and efficiently process 
structured or unstructured medical data such as 
laboratory reports, imaging interpretations, 
electronic health records (EHRs), and genomic 
data to find hidden patterns and correlations. 
 
The drug-monitoring AI models are optimizing 
drug dosages and predicting outcomes based on 
serum concentration, metabolism, and 
pharmacogenomic markers. Anomalies and 
clustering via machine learning help to assess 
variability in drug responses across patient 
populations. AI systems, for example, can detect 
very slight aberrations in biomarkers indicating 
drug toxicity or ineffectiveness, allowing for 
timely remedial action. AI automated data 
interpretation aligns with precision medicine to 
upgrade diagnosis and aid clinical decision-
making based on evidence.[29,30] 

 
5. Integration with Digital Health Technologies 
for Real-Time Monitoring 
 
The recent trends in digital health technologies, 
especially those that fall under the category of 
wearable biosensors and mobile health 
applications, are paving the way for novel 
applications of AI in therapeutic drug monitoring 
(TDM). Such portable devices have AI-enabled 
features that track drug levels and physiological 
parameters (heartbeat, blood pressure and glucose 
levels) continuously and in real-time. By 
employing a series of machine learning 
algorithms, the processing of the data can now 
summon early signs of toxicity or subtherapeutic 
drug levels for intervention within a very short 
time. AI-enabled continuous glucose monitors 
(CGMs) optimize insulin management for 
diabetic patients by forecasting glycemia 
fluctuations and adjusting insulin doses 
accordingly. AI processing platforms for remote 
monitoring also allow clinicians to track 
transplant patients on immunosuppressants and 
ensure adherence and prevent organ rejection. For 
example, cloud-based AI models further improve  
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real-time TDM through data integration from 
multiple sources into a single patient's cloud-
based profile, real-time patient consultations, and 
precision medicine applications.[31,32] 

 

6. Drug-Drug Interaction (DDI) Detection 
 
Artificial intelligence is detecting interactions 
between drugs, which is transforming medication 
security by identifying probable interferences that 
cause adverse effects or just diminished 
therapeutic efficacy. Recently, the types of DDI 
detection methods have been focused entirely on 
clinical guidelines and manually curated 
databases; hence, they often omit the potential for 
new interactions or individual patient factors. 
Such AI models analyze enormous data sets, such 
as EHRs, pharmacovigilance reports, and 
biomedical literature, to discover known and 
novel drug interactions with much more accuracy 
and efficiency. 
 
Machine learning algorithms and NLP combine 
diverse sources, resulting in real-time DDI 
detection. Deep learning models like neural 
networks can identify complicated relations 
between drug mechanisms, metabolic pathways, 
and genetic predispositions for the prediction of 
interactions beyond standard rule-based models. 
Furthermore, AI-based DDI detection proves of 
much assistance when used in polypharmacy or 
situations in which many medications have been 
given, increasing the potential of harmful 
interactions with each additional drug. 
Incorporating AI-enabled DDI screening within 
clinical decision support systems will help the 
prescribers optimize medication regimens while 
decreasing adverse effects and improving patient 
safety.[33,34] 

 

Clinical decision support systems 
(CDSS) in therapeutic drug 
monitoring (TDM) 
 
As of now, AI-integrated clinical decision support 
systems are revolutionizing therapeutic drug 
monitoring through real-time evidence-based 
recommendations that can optimize drug therapy. 
Whereas traditional therapeutic drug monitoring 
relies entirely on manual interpretation of drug 
levels, pharmacokinetic models, and clinical 
judgment, this may lead to interindividual 
variability in dosing accuracy. AI pertinently 
contributes to this decision-making process by 
utilizing data points pertaining to a patient such as 
drug concentrations, renal and hepatic function, 
pre-existing genetic factors, and incidental 
comorbidities so that it can customize drug dosing 
in a way that lessens the risk of toxicity or 
therapeutic failure. 
 
Machine learning (ML) and predictive analytics 
provide CDSS the means to continuously adjust 
the dosing algorithms based on real-world patient 
responses, improving the accuracy of the systems 
over time. The systems can warn the clinician 
regarding potential DDIs, ADRs, and general 
deviations from therapeutic ranges, thereby 
improving medication safety. AI CDSS also 
support adaptive dosing in critical care 
environments, for example, antibiotics in sepsis 
management or anticoagulation agents used in 
cardiac patients. CDSS also aids in integrating 
clinical workflows, assuring precision medicine, 
improving patient outcomes, and simplifying 
medication management for the healthcare 
provider.[35,36] 
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Applications 
 

Therapeutic 
Area 

Drugs Involved AI/ML Applications in TDM 

Infectious 
Diseases 

Vancomycin, 
Aminoglycosides 

(Gentamicin, 
Amikacin), 

Voriconazole 

AI predicts drug clearance based on renal function and 
inflammatory markers and optimizes dosing to prevent 

nephrotoxicity and resistance. Bayesian models refine the dose 
adjustments in real time. 

Cardiovascula
r Diseases 

Warfarin, Rivaroxaban, 
Amiodarone 

AI-enabled pharmacogenomic models use genetic markers 
(CYP2C9, VKORC1, etc) to optimize anticoagulant dosing 

with minimum risk of bleeding. 

Oncology 
Methotrexate, Cisplatin, 
5-Fluorouracil, Tyrosine 
Kinase Inhibitors (TKIs) 

AI predictive models optimize chemotherapy dosing to avoid 
toxicity with clinical efficacy. Deep learning analyzes data 

from the real world for dynamic dose adjustments.  

Neurology & 
Psychiatry 

Valproate, Phenytoin, 
Carbamazepine, 

Lithium, Clozapine 

AI incorporates EEG pattern and genetic polymorphisms with 
clinical data to dose antiepileptic drugs.  

Transplant 
Medicine 

Tacrolimus, 
Cyclosporine, 

Mycophenolate Mofetil 

AI uses Bayesian forecasting and reinforcement learning to 
tailor immunosuppressive dose adjustment to patient-specific 

factors for better long-term graft survival. 

Endocrinolog
y 

Insulin, Levothyroxine 

Continuous glucose monitoring data provide the basis for AI 
modeling of optimal insulin dose adjustment, while ML 
optimizes the replacement of thyroid hormone through 

analysis of metabolic parameters and comorbidities. 

 

Benefits and advantages of AI-
driven therapeutic drug 
monitoring (TDM) 
 
1. Enhanced Accuracy and Efficiency in Drug 
Dosing 
 
AI TDM will ensure perfect dosing by 
considering data like genetics, renal function, and 
really current drug levels. Machine learning 
models will improve the optimization of drug 
doses and reduce the under-dosing risk or 
deterioration for narrow therapeutic index drugs 
such as vancomycin and warfarin. 
 
2. Real-Time Monitoring and Predictive 
Analytics 
 
AI facilitates continuous monitoring of drug 
concentrations, thus allowing real-time 

adjustment in doses. Predictive algorithms will 
also forecast the variations in drug metabolism 
and drug interactions and prevent adverse drug 
reactions ( ADRs) and treatment failures. 
 
3. Improved Patient Safety and Reduced ADRs 
 
By integrating AI in TDM can help health care 
providers in developing proactive measures 
toward ADRs, drug-drug interactions (DDIs), 
contraindications, thereby increasing patient 
safety and reducing hospital stays caused by 
medication-related adverse reactions. 
 
4. Automation and Reduced Clinician 
Workload 
 
TDM using AI would perform an intricate and 
complex calculation and interpretation much less 
likely to fall into the human errors, thereby giving 
healthcare professionals the opportunity to spend  
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more time delivering and less time on mechanical 
data analysis.[37,38,39] 

 
5. Personalized Medicine and Dose 
Individualization 
 
AI models analyze the different genetic and 
metabolic variations among patients to provide 
personalized dosing regimens that optimize 
therapeutic efficacy and reduce the occurrence of 
adverse effects. 
 
6. Cost-Effectiveness and Resource 
Optimization 
 
TDM reduces the superior health care savings 
costs that directly applied by having the adverse 
effects avoided, optimizing drug use, and 
reducing stays in hospitals for patients, especially 
in intensive care and oncology settings 
 
7. Enhanced Decision Support with AI-
Powered Clinical Decision Support Systems 
(CDSS) 
 
AI integrates TDM data into EHRs, converting 
what clinicians do into actionable and evidence-
based decision making, thereby improving 
treatment precision and adherence to guideline 
recommendations. 
 
8. Better Integration with Digital Health 
Technologies 
 
The TDM system does integrate with many 
wearables, mobile health apps, and some IoT-
based biosensors, enabling the monitoring of the 
patient remotely and improving adherence to 
medication out of clinics. 
 
9. Rapid Adaptation to Changing Patient 
Conditions 
 
In contrast to the traditional TDM, AI algorithms 
keep on changing their recommendations for drug 
dosing in response to the altering physiological 
and pathological situations adapting to the 
changing smooth and dynamic nature of treatment 
 
 

 
 
10. Facilitating Research and Drug 
Development 
 
Through AI approaches, TDM speeds up the 
process of drug discovery and development by 
detecting any patterns in the clinically relevant 
pharmacokinetics (PK) and pharmacodynamics 
(PD) data so that pharmaceutical companies 
create their safer and more effective 
therapies.[40,41] 

 

Challenges and limitations in AI-
Based therapeutic drug monitoring 
(TDM) 
 
1. Data Availability and Quality Issues 
 
In AI-based TDM, enormous datasets are needed 
for the training and validation processes. Real 
clinical data, however, may contain missing, 
inconsistent, and biased data which can lead to 
inaccurate target predictions and unreliable dosing 
recommendations. Also, the differences in data 
collection methods across hospitals and regions 
may hinder the generalizability of the AI models.  
 
2. Model Interpretability and Clinical Trust 
 
Many AI models operate as "black boxes" that are 
almost impossible for clinicians to understand in 
making a given dose recommendation. When 
aided by such decisions, the entire transparency of 
the decision-making process will raise doubts 
from health providers while hampering 
acceptance in real-life clinical practice. 
 
3. Ethical and Legal Concerns 
 
Artificial intelligence-based TDM handles critical 
patient data which give rise to issues related to 
data privacy, security, and compliance with 
standards and regulations such as HIPAA and 
GDPR. Liability issues arise when an AI-dosing 
recommendation is detrimental to a patient, and 
there is no clarity on whose responsibility that 
may lie: the clinician; AI development or the 
institution. 
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4. Integration with Existing Healthcare 
Systems 
 
Legacy electronic health record (EHR) systems 
are present in many hospitals and clinics; most of 
these systems will not be able to take integration 
with an AI-based TDM platform. These create 
technical and financial barriers to complete 
implementation and require complete 
infrastructural upgrades. 
 
5. Limited Generalizability Across Patient 
Populations 
 
AI models trained on specific populations do not 
generalize well to patient populations with 
different kinds of genetics, comorbidities, or 
medication regimens. Personalized medicine 
requires highly flexible AI systems, but existing 
models can hardly incorporate patient variation. 
 
6. Need for Continuous Model Updating and 
Validation 
 
New drugs and treatment protocols come with 
new patient reactions and therefore necessitate 
continuous updating and re validating of the AI 
model. An out-of-date model, by lack of regular 
updates, will still give inaccurate or unsafe dosing 
recommendations. However, maintaining the AI 
model requires constant data collection, 
regulatory approval, and huge computational 
resources.[42,43] 

 
7. Risk of Over-Reliance on AI 
 
Though AI makes it easy for a clinician the 
decisions, the clinician must still follow through 
on dose adjustment. The outcome in a complex 
patient whose condition changes quickly, or in 
whom the AI prediction is at odds with clinical 
observations, will result in perverse error. 
 
8. High Implementation Costs and Resource 
Requirements 
 
To develop and deploy TDM systems based on AI 
technologies requires massive amounts of initial 
investments in data infrastructure, software 
development, and staff training. Many health care  

 
 
institutions, especially in low- and medium-
resourced settings, may struggle to afford 
sustaining AI system integration. 
 
9. Regulatory and Standardization Challenges 
 
There are no existing universal regulatory 
frameworks for AI TDM thus rendering 
differences in the validation, approval, and 
clinical adoption processes. Maintaining 
compliance with the requirements of regulatory 
agencies, like the FDA and EMA, is still a 
complex challenge 
 
10. Ethical Considerations in AI Decision-
Making 
 
Unlike dosing recommendations based on clinical 
guideline policies in which human practitioners 
exercise medical judgment to make decisions in 
evaluating the patient, a prescribing decision 
based upon AI should not have biases leading to 
differential therapeutic outcomes through various 
patient populations. 
 

Future directions and innovations 
in AI-Driven TDM 
 
Deep learning, biosensing in real time, and 
personalized medicine will play an advanced role 
in dictating the future of AI-driven Therapeutic 
Drug Monitoring. A considerable innovation 
within the arena refers to AI-driven adaptive 
dosing algorithms that improve drug therapy 
precision by being constantly updated on the basis 
of real-time patient data. The integration of 
wearable biosensors and IoT devices will allow 
continuous monitoring of drug levels and provide 
feedback to the AI models for real-time 
adjustments of dosing. Integration of multi-omics 
data—consisting of genomics, metabolomics, and 
proteomics—will refine AI drug pharmacokinetic 
(PK) and pharmacodynamic (PD) modeling for 
personalized medicine by fine-tuning the drug 
regimen based on the individual's genetics and 
metabolism.The utmost innovation in future AI-
enabled Therapeutic Drug Monitoring (TDM) will 
continue to be driven by improvements in deep 
learning, biosensing in real-time, and personalized 
medicine. One such breakthrough is AI-based  
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adaptive dosing algorithms that are linked to real-
time patient data and continuously update to 
increase precision in drug therapy. The coupling 
of biosensors and devices with the Internet of 
Things (IoT) will facilitate constant drug-level 
monitoring for an immediate response to the AI 
model for dynamic dose adjustment. In addition, 
multi-omics data sets-including genomics, 
metabolomics, and proteomics-will improve 
pharmacokinetic (PK) and pharmacodynamic 
(PD) modeling based on AI, resulting in true 
personalized medicine, whereby drug regimens 
are focused on an individual's genetic and 
metabolic profile.[44,45] 

 

Conclusion 
 
The revolution of Therapeutic Drug Monitoring 
(TDM) into data-driven potentialized dosing 
strategies has ensured improvements in drug 
efficacy without toxicity and is entirely governed 
by the interference of these technological 
advances such as AI and ML. Neural networks 
and Bayesian models are examples of machine 
learning models that fine-tune drug levels across 
diverse therapeutic fields, including antimicrobial 
therapy, immunosuppressive agents, and 
oncology. They instead possess the therapeutic 
advantages of their integration in AI-based 
Clinical Decision Support Systems (CDSS) with 
pharmacokinetic (PK) and pharmacodynamic 
pathways associated with patient clinical data in 
real time and dose efficacy dimension. 
 
Even with all of those advances, obstacles still 
prevail: poor data quality, interpretation of model 
results, constraints in regulations, and ethical 
questions. Research efforts on tackling these 
issues through collaboration and solid clinical 
validation are paramount, especially in the area of 
AI-driven TDM implementation. AI will become 
another innovation factor of great importance 
when combined with pharmacogenomics and real-
world evidence for precision medicine in 
optimizing therapeutic outcomes and ensuring 
patient safety. Successful integration of AI with 
routine practice in the clinic can shape the future 
of personalized drug therapy. 
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