

International Journal of Current Research in Medical Sciences

ISSN: 3107-3743 (Print), ISSN: 2454-5716 (Online) (A Peer Reviewed, Indexed and Open Access Journal) www.ijcrims.com

Review Article

Volume 11, Issue 9 -2025

DOI: http://dx.doi.org/10.22192/ijcrms.2025.11.09.003

Histopathological and Immunohistochemical Approaches in Breast Cancer Diagnosis

*Emmanuel Ifeanyi Obeagu

Department of Biomedical and Laboratory Science, Africa University, Zimbabwe.

*Corresponding author: Emmanuel Ifeanyi Obeagu, Department of Biomedical and Laboratory Science, Africa University, Zimbabwe, emmanuelobeagu@yahoo.com,

ORCID: 0000-0002-4538-0161

Abstract

Accurate and timely diagnosis of breast cancer is critical for guiding treatment and improving patient outcomes. Histopathology remains the gold standard, providing detailed insights into tumor morphology, type, and grade, while immunohistochemistry (IHC) complements this by detecting specific molecular markers that inform tumor classification, prognosis, and therapeutic decisions. This narrative review explores the principles, methodologies, and clinical applications of histopathology and IHC in breast cancer diagnosis. It highlights their integration in routine practice, discusses current limitations such as interobserver variability and technical challenges, and examines emerging innovations, including multiplexed IHC and digital pathology. The review underscores the essential role of combined histopathological and immunohistochemical evaluation in precision oncology, emphasizing its continued relevance in improving diagnostic accuracy, guiding personalized therapy, and optimizing patient outcomes.

Keywords: Histopathology, Immunohistochemistry, Breast cancer, Tumor markers, Diagnostic pathology

Introduction

Breast cancer is the most frequently diagnosed malignancy among women worldwide and remains a leading cause of cancer-related morbidity and mortality. Early and accurate diagnosis is crucial for guiding treatment decisions, predicting prognosis, and improving survival outcomes. While imaging techniques and clinical evaluation can suggest malignancy, definitive diagnosis relies on tissue-based

assessment [1-3]. **Histopathology**, the microscopic examination of tumor tissue, provides critical information about tumor type, grade, architectural patterns, and invasion. It remains the cornerstone of breast cancer diagnosis, enabling the classification of tumors such as invasive ductal carcinoma, invasive lobular carcinoma, and less common subtypes. Tumor grading and assessment of the tumor microenvironment further refine prognostic evaluation and guide clinical management [4-5].

Η

owever, histopathology alone does not fully the molecular heterogeneity influences tumor behavior and therapy response. Immunohistochemistry (IHC) addresses this gap by detecting specific protein markers within tumor cells, including hormone receptors (estrogen and progesterone), HER2, proliferation indices (Ki-67), and emerging biomarkers such as PD-L1. IHC enables molecular subtyping, guides targeted therapy selection, and informs prognostication, making it an indispensable complement to histopathology [6-7].The integration of histopathological evaluation with IHC provides a comprehensive diagnostic approach that combines structural and molecular insights. This narrative review explores the methodologies, clinical principles, and applications of histopathology and IHC in breast cancer diagnosis. It highlights complementary roles, discusses limitations, and examines emerging innovations that enhance diagnostic precision, underscoring their central role in modern precision oncology [8-9].

Histopathological Evaluation in Breast Cancer

Histopathology remains the cornerstone of breast cancer diagnosis, providing essential morphological information that informs tumor classification, grading, and prognosis. The evaluation typically involves examining tissue obtained via core needle biopsy, excisional biopsy, or surgical resection, with the aim of characterizing the tumor's architecture, cellular morphology, and relationship to surrounding tissues [10-12].**Tumor Typing:** Accurate classification of breast cancer subtypes is critical for determining prognosis and guiding therapy. The most common histologic subtype is invasive carcinoma (IDC), characterized infiltrative duct-like structures within the stroma. Invasive lobular carcinoma (ILC), the second most common subtype, is marked by small, discohesive cells often arranged in single-file patterns, which may be radiologically subtle. Less common special types—such as tubular. mucinous, medullary, and papillary carcinomas exhibit distinct morphological features that correlate with favorable or unfavorable prognoses. Correct subtype identification is essential for tailoring patient management and predicting clinical outcomes [13].

Tumor Grading: Grading evaluates tumor aggressiveness based on cellular differentiation and proliferation. The Nottingham grading system, a widely adopted framework, assesses three components: tubule formation, nuclear pleomorphism, and mitotic activity. parameter is scored from 1 to 3, with the total score categorizing tumors into Grade 1 (welldifferentiated), Grade (moderately differentiated), or Grade 3 (poorly differentiated). Higher-grade tumors generally exhibit more aggressive clinical behavior, higher metastatic potential, and a poorer prognosis, influencing decisions regarding adjuvant therapy [14]. Margin Invasion Assessment: Histopathology provides critical information regarding surgical margins, ensuring complete tumor excision and minimizing the risk of local recurrence. Evaluation of lymphovascular invasion, perineural invasion, and extension into adjacent structures further refines prognostic assessment and may influence post-operative management strategies [15-16].

Tumor Microenvironment: Beyond tumor cells, histopathology also examines the surrounding stroma, immune cell infiltration, and desmoplastic response. Tumor-infiltrating lymphocytes (TILs), for example, have been shown to correlate with better responses to chemotherapy immunotherapy, particularly in triple-negative and HER2-positive breast cancers. Assessment of stromal composition, fibrosis, and inflammatory infiltrates adds valuable context to the tumor's biological behavior [17-18]. While histopathology provides detailed structural and morphological insights, it is limited in capturing molecular heterogeneity. **Tumors** that appear morphologically similar may differ significantly in genetic and protein expression profiles, which can influence treatment response and prognosis. This limitation underscores the importance of integrating histopathological evaluation with

immunohistochemistry (IHC) to achieve a more comprehensive, precise, and clinically actionable diagnosis [19-21].

Immunohistochemical Approaches in Breast Cancer Diagnosis

Immunohistochemistry (IHC) has become an indispensable complement to histopathology in breast cancer diagnosis. By detecting specific protein markers within tissue sections, IHC provides critical molecular insights that refine tumor classification, guide therapy selection, and inform prognosis. Unlike traditional histopathology, which primarily evaluates cellular morphology and architecture, IHC reveals functional and phenotypic characteristics that are for precision oncology [22-24]. essential Hormone Receptor Assessment (ER and PR): Estrogen receptor (ER) and progesterone receptor (PR) are nuclear hormone receptors expressed in a significant subset of breast cancers. Their detection through IHC is fundamental, as ER and PR positivity predicts responsiveness to endocrine therapies such as tamoxifen or aromatase inhibitors. Ouantitative evaluation involves assessing both the proportion of positively stained tumor cells and the intensity of staining, which can influence treatment decisions. Hormone receptor status also provides prognostic receptor-positive information, with tumors generally exhibiting a more favorable clinical course [25-26].

HER2 (Human Epidermal Growth Factor Receptor 2) **Evaluation:** HER2 is transmembrane tyrosine kinase receptor whose overexpression or gene amplification is associated with aggressive disease. IHC is widely used to evaluate HER2 status, often in conjunction with fluorescence in situ hybridization (FISH) for equivocal cases. Accurate HER2 assessment is critical, as patients with HER2-positive tumors are candidates for targeted therapies such as trastuzumab, pertuzumab, and other HER2directed agents, which significantly improve survival outcomes [27-28].

Proliferation Markers (Ki-67): Ki-67 is a nuclear protein expressed during active phases of

the cell cycle, serving as a measure of tumor proliferation. High Ki-67 indices indicate aggressive tumor behavior and are frequently used to guide adjuvant therapy decisions, particularly in hormone receptor-positive breast cancers. Standardized evaluation of Ki-67 remains a challenge, but it provides valuable prognostic and predictive information [29].

Basal and Luminal Markers: Cytokeratins and other lineage-specific markers assist in classifying tumors into molecular subtypes, including luminal A, luminal B, HER2-enriched, and triple-negative/basal-like breast cancers. This molecular classification informs prognosis and guides therapeutic strategies, especially for subtypes such as triple-negative breast cancer, which lack ER, PR, and HER2 expression and often require more aggressive systemic therapy [30].

Emerging **Biomarkers:** Beyond standard markers, novel proteins such as PD-L1, androgen receptor, and other immune-related markers are increasingly evaluated through IHC to identify candidates for immunotherapy or experimental targeted treatments. Multiplex IHC techniques allow simultaneous assessment of multiple markers within a single tissue section, providing a comprehensive molecular profile while conserving tissue samples [31].

Integration with Histopathology: IHC does not replace histopathology but rather enhances its diagnostic and prognostic utility. Morphology provides structural context, while IHC reveals the molecular identity and functional behavior of tumor cells. Together, these approaches offer a holistic view of tumor biology, enabling accurate classification, risk stratification, and personalized therapy planning [32].

Integration of Histopathology and Immunohistochemistry

The integration of histopathology and immunohistochemistry (IHC) represents breast cancer comprehensive approach to diagnosis, combining structural, morphological, to inform patient and molecular insights management. While histopathology provides the

architectural and cellular context of tumors, IHC adds a molecular dimension that enables accurate classification, prognostication, and therapy guidance. Together, these modalities form the foundation of precision oncology in breast cancer [33].

Enhancing Diagnostic Accuracy: Histopathology establishes the presence of malignancy, identifies tumor subtype, and evaluates grade and invasion patterns. However, certain tumors may present with ambiguous morphology, subtle features, or overlapping histologic patterns, complicating definitive diagnosis. In these cases, IHC provides molecular clarity by detecting specific biomarkers, confirming tumor lineage, and distinguishing between morphologically similar subtypes. For instance, differentiating lobular from ductal carcinoma can be challenging on morphology alone, but IHC markers such as E-cadherin aid in accurate classification [34].

Refining Prognostication: Histopathological provides prognostic evaluation essential information, including tumor grade, mitotic activity, and lymphovascular invasion. IHC further refines risk stratification by assessing hormone receptor status, HER2 expression, proliferation indices (Ki-67), and infiltrating lymphocytes (TILs). The combination of these structural and molecular features allows clinicians to more accurately predict disease behavior, recurrence risk, and response to therapy [35].

Guiding Therapeutic Decisions: Integration of histopathology and IHC directly informs treatment planning. Hormone receptor and HER2 status, determined by IHC, are critical for selecting targeted therapies such as endocrine therapy or HER2-directed agents. Proliferation markers and basal/luminal subtyping provide additional context for chemotherapy decisions. Without the complementary information from IHC, histopathology alone may not fully capture the molecular targets necessary for personalized therapy [36].

Optimizing Limited Tissue Samples: In cases where biopsy material is limited, the integration of histopathology and IHC maximizes diagnostic yield. Core needle biopsies or fine-needle aspirates can be evaluated morphologically and molecularly, ensuring accurate diagnosis and molecular characterization even from small tissue volumes [37].

Addressing Tumor Heterogeneity: Tumors are inherently heterogeneous, both morphologically and molecularly. While histopathology can reveal regional architectural variation, IHC identifies differential expression of key biomarkers across tumor regions. This integrated approach enables a more complete understanding of tumor biology and improves the reliability of subtype classification and treatment selection [38].

Clinical Workflow and Precision Oncology: In routine clinical practice, histopathology and IHC are closely intertwined. Initial morphological assessment guides the selection of appropriate IHC panels, and IHC findings are interpreted in the context of tissue architecture and histologic features. This synergy ensures that diagnoses are both accurate and clinically actionable, supporting tailored therapeutic strategies that improve patient outcomes [39].

Clinical Applications and Current Limitations

Histopathology and immunohistochemistry (IHC) collectively form the backbone of clinical breast cancer diagnostics, offering insights that extend beyond mere detection to influence prognosis, therapeutic decision-making, and patient monitoring. Their integration has transformed the clinical management of breast cancer, enabling more precise, personalized, and timely interventions.

Clinical Applications:

- 1. Accurate Diagnosis and Subtyping: Histopathology establishes the presence of malignancy and provides detailed information on tumor architecture, cellular morphology, and grade. IHC complements this by defining molecular subtypes through assessment of estrogen receptor (ER), progesterone receptor (PR), HER2 status, and proliferation indices (Ki-67). This integrated approach ensures that tumors are accurately classified, which is crucial for selecting appropriate treatment strategies [40].
- 2. Therapeutic **Guidance: IHC-derived** biomarkers directly inform therapy selection. ER and PR positivity indicate suitability for endocrine therapy, while HER2 overexpression identifies candidates for targeted HER2-directed therapies. Proliferation markers, along with molecular subtyping, further chemotherapy guide decisions, particularly in ambiguous or intermediate-risk cases.
- 3. **Prognostication:** The combination of tumor grade, receptor status, proliferation indices, and tumor microenvironment features (e.g., tumor-infiltrating lymphocytes) allows clinicians to stratify patients based on recurrence risk and overall prognosis. Highgrade tumors with HER2 overexpression or elevated Ki-67, for example, typically require more aggressive systemic therapy compared to low-grade, hormone receptor-positive tumors.
- 4. Monitoring and Risk Assessment: Histopathology and IHC can inform the likelihood of recurrence and responsiveness to therapy. Emerging biomarkers, such as PD-L1 expression or basal/luminal markers, are increasingly used to guide immunotherapy eligibility and refine risk stratification, particularly in triple-negative breast cancer [41].

Current Limitations:

Despite their critical role, histopathology and IHC have limitations that can impact diagnostic accuracy and clinical decision-making:

- Interobserver Variability: Interpretation of morphological features and semi-quantitative IHC scoring can vary between pathologists, leading to inconsistent classification or treatment recommendations.
- Technical Challenges: Pre-analytical factors, including tissue fixation, processing, and antibody quality, can affect staining outcomes and reproducibility.
- Tumor Heterogeneity: Intratumoral variability may result in focal or patchy biomarker expression, potentially leading to misclassification or incomplete characterization of the tumor.
- Limited Tissue Availability: Small biopsy samples may restrict the number of IHC tests that can be performed, limiting comprehensive molecular profiling.
- Resource Constraints: Advanced IHC panels, multiplexing, and automated digital pathology systems require specialized equipment and expertise, which may not be readily available in all clinical settings [40].

Emerging innovations, such as digital pathology, artificial intelligence-assisted scoring, and multiplexed IHC, are addressing many of these challenges, enhancing precision, reproducibility, and interpretive consistency. Furthermore, the integration of histopathology and IHC with molecular profiling technologies promises to overcome current limitations, enabling more comprehensive and individualized diagnostic and prognostic assessments[41].

Conclusion

Histopathology and immunohistochemistry (IHC) integral to the accurate diagnosis, classification, and management of breast cancer. Histopathology provides detailed structural and morphological insights, including tumor type, grade, and invasion patterns, which are essential diagnosis for initial and prognostication. Complementing this, IHC offers molecular characterization by detecting key biomarkers such as hormone receptors, HER2, proliferation indices, and emerging therapeutic targets. The integration of histopathology and IHC allows a comprehensive understanding of tumor biology,

enhancing diagnostic accuracy, informing risk stratification, and guiding personalized therapy. While challenges such as interobserver variability, technical limitations, and tumor heterogeneity exist, ongoing advancements—including multiplexed IHC, digital pathology, and integration with molecular profiling—are steadily improving reliability, precision, and clinical applicability.

References

- 1. Bhushan, A., Gonsalves, A., & Menon, J. U. (2021). Current State of Breast Cancer Diagnosis, Treatment, and Theranostics. *Pharmaceutics*, 13(5), 723. https://doi.org/10.3390/pharmaceutics130507 23
- 2. Łukasiewicz, S., Czeczelewski, M., Forma, A., Baj, J., Sitarz, R., &Stanisławek, A. (2021). Breast Cancer-Epidemiology, Risk Factors, Classification, Prognostic Markers, and Current Treatment Strategies-An Updated Review. *Cancers*, 13(17), 4287. https://doi.org/10.3390/cancers13174287
- 3. Obeagu E. I. (2025). N2 Neutrophils and Tumor Progression in Breast Cancer: Molecular Pathways and Implications. *Breast cancer (Dove Medical Press)*, 17, 639–651. https://doi.org/10.2147/BCTT.S542787
- 4. Makki J. (2015). Diversity of Breast Carcinoma: Histological Subtypes and Clinical Relevance. *Clinical medicine insights*. *Pathology*, 8, 23–31. https://doi.org/10.4137/CPath.S31563
- 5. Obeagu, E. I., & Obeagu, G. U. (2024). Lymphocyte infiltration in breast cancer: A promising prognostic indicator. *Medicine*, 103(49), e40845. https://doi.org/10.1097/MD.0000000000000408 45
- 6. Williams, S. L., Birdsong, G. G., Cohen, C., & Siddiqui, M. T. (2009). Immunohistochemical detection of estrogen and progesterone receptor and HER2 expression in breast carcinomas: comparison of cell block and tissue block preparations. International journal of clinical and experimental pathology, 2(5), 476–480.

- 7. Leen, S., Steven, V. L., Marie, D. A., Valérie, D., Annemie, deP., Gert, V. D., Peter, V. D., Luc, D., Peter, V., & Filip, L. (2014). Study assessing the quality of quantification of estrogen receptor protein expression by immunohistochemistry and gene expression in breast cancer. *Pathology research international*, 2014, 372653. https://doi.org/10.1155/2014/372653
- 8. Gabriel, J. A., Weerasinghe, N., Balachandran, P., Salih, R., & Orchard, G. E. (2024). A Narrative Review of Molecular, Immunohistochemical and In-Situ Techniques in Dermatopathology. *British journal of biomedical science*, 81, 13437. https://doi.org/10.3389/bjbs.2024.13437
- 9. Chatterjee, D., & Bhattacharjee, R. (2018). Immunohistochemistry in Dermatopathology and its Relevance in Clinical Practice. *Indian dermatology online journal*, *9*(4), 234–244. https://doi.org/10.4103/idoj.IDOJ_8_18
- 10. Kwok, T. C., Rakha, E. A., Lee, A. H., Grainge, M., Green, A. R., Ellis, I. O., &Powe, D. G. (2010). Histological grading of breast cancer on needle core biopsy: the role of immunohistochemical assessment of proliferation. *Histopathology*, *57*(2), 212–219. https://doi.org/10.1111/j.1365-2559.2010.03620.x
- 11. Yang, Y., Liu, Z., Huang, J., Sun, X., Ao, J., Zheng, B., Chen, W., Shao, Z., Hu, H., Yang, Y., & Ji, M. (2023). Histological diagnosis of unprocessed breast core-needle biopsy via stimulated Raman scattering microscopy and multi-instance learning. *Theranostics*, 13(4), 1342–1354.
 - https://doi.org/10.7150/thno.81784
- 12. Obeagu, E. I., &Obeagu, G. U. (2024). Breast cancer: A review of risk factors and diagnosis. *Medicine*, 103(3), e36905. https://doi.org/10.1097/MD.00000000000369 05
- 13. Dieci, M. V., Orvieto, E., Dominici, M., Conte, P., & Guarneri, V. (2014). Rare breast cancer subtypes: histological, molecular, and clinical peculiarities. *The oncologist*, 19(8), 805–813.
 - https://doi.org/10.1634/theoncologist.2014-0108

- 14. van Dooijeweert, C., van Diest, P. J., & Ellis, I. O. (2022). Grading of invasive breast carcinoma: the way forward. *Virchows Archiv* : an international journal of pathology, 480(1), 33–43. https://doi.org/10.1007/s00428-021-03141-2
- 15. Ravi, S. B., & Annavajjula, S. (2014). Surgical margins and its evaluation in oral cancer: a review. *Journal of clinical and diagnostic research: JCDR*, 8(9), ZE01–ZE5. https://doi.org/10.7860/JCDR/2014/9755.4836
- 16. Devaraja, K., Thakar, A., &Paleri, V. (2025). Assessment and interpretation of the status of surgical margins following resective surgery for head and neck squamous cancer: a narrative review. *World journal of surgical oncology*, 23(1), 321. https://doi.org/10.1186/s12957-025-03993-x
- 17. Obeagu, E. I., &Obeagu, G. U. (2024). Exploring neutrophil functionality in breast cancer progression: A review. *Medicine*, 103(13), e37654. https://doi.org/10.1097/MD.000000000000376 54
- 18. Obeagu E. I. (2025). Neutrophil-driven tumor inflammation in breast cancer: Pathways and therapeutic implications: A narrative review. *Medicine*, 104(25), e43024. https://doi.org/10.1097/MD.0000000000000430 24
- 19. Nielsen, A. W., Manoochehri, H. E., Zhong, H., Panwar, V., Jarmale, V., Jasti, J., Nourani, M., Rakheja, D., Brugarolas, J., Kapur, P., & Rajaram, S. (2025). MorphoITH: a framework for deconvolving intra-tumor heterogeneity using tissue morphology. *Genome medicine*, 17(1), 101. https://doi.org/10.1186/s13073-025-01504-x
- 20. Ramón Y Cajal, S., Hümmer, S., Peg, V., Guiu, X. M., De Torres, I., Castellvi, J., Martinez-Saez, E., & Hernandez-Losa, J. (2019). Integrating clinical, molecular, proteomic and histopathological data within the tissue context: tissunomics. *Histopathology*, 75(1), 4–19. https://doi.org/10.1111/his.13828

- 21. Obeagu E. I. (2025). The selenium paradox friend or foe in breast cancer? *Annals of medicine and surgery (2012)*, 87(9), 5569–5577. https://doi.org/10.1097/MS9.00000000000034
- 22. Zaha D. C. (2014). Significance of immunohistochemistry in breast cancer. *World journal of clinical oncology*, *5*(3), 382–392. https://doi.org/10.5306/wjco.v5.i3.382
- 23. Klöckner, P., Teixeira, J., Montezuma, D., Fraga, J., Horlings, H. M., Cardoso, J. S., & Oliveira, S. P. (2025). H&E to IHC virtual staining methods in breast cancer: an overview and benchmarking. *NPJ digital medicine*, 8(1), 384. https://doi.org/10.1038/s41746-025-01741-9
- 25. Hefti, M. M., Hu, R., Knoblauch, N. W., Collins, L. C., Haibe-Kains, B., Tamimi, R. M., & Beck, A. H. (2013). Estrogen receptor negative/progesterone receptor positive breast cancer is not a reproducible subtype. *Breast cancer research*: *BCR*, *15*(4), R68. https://doi.org/10.1186/bcr3462
- 26. Obeagu E. I. (2025). The nutritional equation: decoding diet's influence on breast cancer risk and progression a perspective. *Annals of medicine and surgery (2012)*, 87(9), 5528–5534. https://doi.org/10.1097/MS9.00000000000036
- 27. Iqbal, N., & Iqbal, N. (2014). Human Epidermal Growth Factor Receptor 2 (HER2) in Cancers: Overexpression and Therapeutic Implications. *Molecular biology international*, 2014, 852748. https://doi.org/10.1155/2014/852748

- 28. Gutierrez, C., & Schiff, R. (2011). HER2: biology, detection, and clinical implications. *Archives of pathology & laboratory medicine*, 135(1), 55–62. https://doi.org/10.5858/2010-0454-RAR.1
- Louis, D. M., Nair, L. M., Vallonthaiel, A. G., Narmadha, M. P., & Vijaykumar, D. K. (2023). Ki 67: a Promising Prognostic Marker in Early Breast Cancer-a Review Article. *Indian journal of surgical oncology*, 14(1), 122–127. https://doi.org/10.1007/s13193-022-01631-6
- 30. Garrido-Castro, A. C., Lin, N. U., &Polyak, K. (2019). Insights into Molecular Classifications of Triple-Negative Breast Cancer: Improving Patient Selection for Treatment. *Cancer discovery*, 9(2), 176–198. https://doi.org/10.1158/2159-8290.CD-18-1177
- 31. Voong, K. R., Feliciano, J., Becker, D., & Levy, B. (2017). Beyond PD-L1 testing-emerging biomarkers for immunotherapy in non-small cell lung cancer. *Annals of translational medicine*, *5*(18), 376. https://doi.org/10.21037/atm.2017.06.48
- 32. Arora, S., Velichinskii, R., Lesh, R. W., Ali, U., Kubiak, M., Bansal, P., Borghaei, H., Edelman, M. J., &Boumber, Y. (2019). Existing and Emerging Biomarkers for Immune Checkpoint Immunotherapy in Solid Tumors. *Advances in therapy*, 36(10), 2638–2678. https://doi.org/10.1007/s12325-019-01051-z
- 33. Ivanova, M., Pescia, C., Trapani, D., Venetis, K., Frascarelli, C., Mane, E., Cursano, G., Sajjadi, E., Scatena, C., Cerbelli, B., d'Amati, G., Porta, F. M., Guerini-Rocco, E., Criscitiello, C., Curigliano, G., & Fusco, N. (2024). Early Breast Cancer Risk Assessment: Integrating Histopathology with Artificial Intelligence. *Cancers*, 16(11), 1981. https://doi.org/10.3390/cancers16111981
- 34. Tseng, L. J., Matsuyama, A., & MacDonald-Dickinson, V. (2023). Histology: The gold standard for diagnosis?. The Canadian veterinary journal = La revue veterinaire canadienne, 64(4), 389–391.

- 35. Kanyılmaz, G., Yavuz, B. B., Aktan, M., Karaağaç, M., Uyar, M., &Fındık, S. (2019). Prognostic Importance of Ki-67 in Breast Cancer and Its Relationship with Other Prognostic Factors. *European journal of breast health*, 15(4), 256–261. https://doi.org/10.5152/ejbh.2019.4778
- 36. Oksuz, S., Kinikoglu, O., Ozkerim, U., Altintas, Y. E., Isik, D., Surmeli, H., Odabas, H., Ay, S., Basoglu, T., &Turan, N. (2025). Impact of HER2 Status Assessed by Immunohistochemistry on Treatment Response in Patients with Metastatic Breast Cancer Receiving Trastuzumab Emtansine. *Medicina (Kaunas, Lithuania)*, 61(5), 819. https://doi.org/10.3390/medicina61050819
- 37. Lin, Z., Tang, J., Tan, A., Tang, S., Li, Y., Gu, Y., Liu, C., Li, M., Chen, Z., Chen, Y., Zhang, Y., He, P., Deng, Q., Liang, W., He, J., & Jiang, J. (2025). Optimizing core needle biopsy specimen collection techniques to enhance molecular testing adequacy in nonsmall cell lung cancer. *Journal of thoracic disease*, 17(7), 4782–4793. https://doi.org/10.21037/jtd-2025-521
- 38. Diaz-Cano S. J. (2012). Tumor heterogeneity: mechanisms and bases for a reliable application of molecular marker design. *International journal of molecular sciences*, 13(2), 1951–2011. https://doi.org/10.3390/ijms13021951
- 39. Chatterjee, D., & Bhattacharjee, R. (2018). Immunohistochemistry in Dermatopathology and its Relevance in Clinical Practice. *Indian dermatology online journal*, *9*(4), 234–244. https://doi.org/10.4103/idoj.IDOJ 8 18
- 40. Papalexis, P., Georgakopoulou, V. E., Keramydas, D., Vogiatzis, R., Taskou, C., Anagnostopoulou, F. A., Nonni, A., Lazaris, A. C., Zografos, G. C., Kavantzas, N., & Thomopoulou, G. E. (2024). Clinical, Histopathological, and Immunohistochemical Characteristics of Predictive Biomarkers of Breast Cancer: A Retrospective Study. *Cancer diagnosis & prognosis*, 4(3), 340–351. https://doi.org/10.21873/cdp.10330

41. Klöckner, P., Teixeira, J., Montezuma, D., Fraga, J., Horlings, H. M., Cardoso, J. S., & Oliveira, S. P. (2025). H&E to IHC virtual staining methods in breast cancer: an overview and benchmarking. *NPJ digital medicine*, 8(1), 384. https://doi.org/10.1038/s41746-025-01741-9

Access this Article in Online	
	Website: www.ijcrims.com
E TORCO	Subject: Histopathology
Quick Response Code	inotopunotog)
DOI: 10.22192/ijcrms.2025.11.09.003	

How to cite this article:

Emmanuel Ifeanyi Obeagu. (2025). Histopathological and Immunohistochemical Approaches in Breast Cancer Diagnosis. Int. J. Curr. Res. Med. Sci. 11(9): 23-31.

DOI: http://dx.doi.org/10.22192/ijcrms.2025.11.09.003