

Cytokine Storm in Obstetrics: Linking Postpartum Hemorrhage, Endothelial Dysfunction, and Maternal Morbidity

***Emmanuel Ifeanyi Obeagu^{1,2}**

¹Division of Haematology, Department of Biomedical and Laboratory Science, Africa University, Zimbabwe.

²Department of Molecular Medicine and Haematology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa

*Corresponding author: Emmanuel Ifeanyi Obeagu, Department of Biomedical and Laboratory Science, Africa University, Zimbabwe, emmanuelobeagu@yahoo.com, ORCID: 0000-0002-4538-0161

Abstract

Postpartum hemorrhage (PPH) is a leading cause of maternal morbidity and mortality and has traditionally been managed as a primarily hemodynamic emergency driven by acute blood loss. Emerging evidence suggests that severe PPH can trigger a cytokine storm—a dysregulated systemic inflammatory response characterized by excessive cytokine release, endothelial injury, coagulopathy, and multiorgan dysfunction. This narrative review explores the pathophysiological links between PPH, cytokine-mediated endothelial dysfunction, and maternal morbidity. We examine how tissue hypoxia, ischemia–reperfusion injury, and transfusion-related immune activation converge to amplify systemic inflammation, leading to persistent hypotension, organ dysfunction, and coagulopathy. Clinical manifestations, diagnostic challenges, and relevant biomarkers are discussed, alongside therapeutic and management considerations. Recognizing cytokine storm as a central driver of adverse maternal outcomes reframes severe PPH as both a circulatory and inflammatory catastrophe, highlighting the need for integrated hemodynamic and immunological approaches in maternal critical care.

Keywords: Postpartum hemorrhage; Cytokine storm; Endothelial dysfunction; Maternal morbidity; Obstetric critical care

Introduction

Postpartum hemorrhage (PPH) remains one of the leading causes of maternal morbidity and mortality worldwide, accounting for a significant proportion of maternal deaths despite advances in obstetric care [1-2]. Defined as excessive blood loss following childbirth, PPH is traditionally conceptualized as a hypovolemic emergency, with management focused on rapid hemorrhage control, fluid resuscitation, and correction of coagulopathy. While these interventions are essential, they do not fully explain the persistent or progressive maternal instability observed in a subset of women, suggesting that additional pathophysiological mechanisms may contribute to adverse outcomes [4]. Pregnancy and parturition involve dynamic immunological adaptations that balance fetal tolerance with maternal host defense. Labor itself represents a pro-inflammatory state, facilitating uterine contractions, placental separation, and tissue remodeling. In the setting of severe PPH, this delicate immune balance may be abruptly disrupted, leading to excessive activation of innate and adaptive immune pathways. Emerging evidence indicates that such dysregulated immune responses can culminate in a cytokine storm—a systemic hyperinflammatory state characterized by uncontrolled release of pro-inflammatory cytokines, endothelial dysfunction, coagulopathy, and multiorgan injury [5-6].

Cytokine storm has been extensively described in conditions such as sepsis, trauma, and immunotherapy-related complications, but its role in obstetrics is only beginning to be recognized. In severe PPH, hemorrhage-induced tissue hypoxia, ischemia-reperfusion injury, and transfusion-related immunomodulation act synergistically to trigger this inflammatory cascade. Endothelial cells, already adapted to the high-flow, low-resistance circulatory state of pregnancy, are particularly vulnerable to cytokine-mediated injury, resulting in capillary leak, vasoplegia, and microvascular thrombosis. These vascular derangements often manifest clinically as hypotension refractory to fluids, pulmonary edema, coagulopathy, and organ

dysfunction—features that cannot be explained solely by blood loss [7-8]. The recognition of cytokine storm as a key contributor to maternal morbidity reframes severe PPH as a dual insult: both a hemodynamic and immunological catastrophe. This perspective has profound implications for diagnosis, monitoring, and management. Traditional resuscitation strategies focusing exclusively on volume replacement may be insufficient or even detrimental if the inflammatory component is not addressed. Understanding the immunopathophysiological mechanisms underlying cytokine storm in PPH is therefore critical to guiding timely interventions, optimizing critical care, and reducing preventable maternal morbidity and mortality [9-10]. In this narrative review, we examine the emerging evidence linking PPH to cytokine storm, with a particular focus on endothelial dysfunction and its contribution to maternal morbidity. The paper discussed the underlying mechanisms, clinical manifestations, diagnostic challenges, and potential therapeutic strategies, highlighting the importance of integrating immunological insight into obstetric critical care. By broadening the conceptual framework of maternal deterioration in severe PPH, this review aims to provide a foundation for improved recognition, management, and outcomes in women facing this life-threatening obstetric emergency.

Pathophysiological Interplay Between Postpartum Hemorrhage and Cytokine Storm

Severe postpartum hemorrhage (PPH) initiates a cascade of physiological events that extend well beyond simple blood loss, creating a milieu conducive to the development of cytokine storm. The pathophysiological interplay between PPH and hyperinflammatory states reflects the convergence of tissue hypoxia, ischemia-reperfusion injury, immune activation, endothelial dysfunction, and transfusion-related immunomodulation. Together, these processes transform maternal shock from a purely hemodynamic phenomenon into a complex systemic inflammatory syndrome [11-12]. Acute

and massive blood loss in PPH results in tissue hypoperfusion and cellular hypoxia. Oxygen deprivation triggers metabolic stress, mitochondrial dysfunction, and eventual cellular injury or necrosis, leading to the release of damage-associated molecular patterns (DAMPs). These endogenous danger signals activate pattern recognition receptors on innate immune cells, including Toll-like receptors on macrophages, neutrophils, and dendritic cells. This engagement rapidly stimulates transcription of pro-inflammatory cytokines, including interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF- α), and interleukin-1 β (IL-1 β), initiating the systemic inflammatory response that underpins cytokine storm [13-14].

Ischemia–reperfusion injury further amplifies this inflammatory cascade. Restoration of blood flow, while essential for tissue salvage, generates reactive oxygen species and oxidative stress, exacerbating endothelial injury and perpetuating cytokine release. The resulting feed-forward loop transforms localized tissue injury into a systemic hyperinflammatory state, with vascular, renal, hepatic, and pulmonary involvement [15]. Endothelial dysfunction plays a central role in mediating maternal morbidity during cytokine storm. Pregnancy is associated with adaptive endothelial changes that support increased circulatory volume and low systemic vascular resistance. Exposure to high concentrations of circulating cytokines disrupts endothelial barrier integrity, increases vascular permeability, and promotes vasodilation and microvascular thrombosis. These changes manifest clinically as hypotension refractory to fluids, capillary leak, and organ hypoperfusion—hallmarks of CRS-mediated maternal shock [16].

Massive transfusion, often required in the management of severe PPH, can further exacerbate systemic inflammation. Stored blood products contain bioactive lipids, cytokines, extracellular vesicles, and free hemoglobin, all of which may stimulate recipient immune cells. Transfusion-related immunomodulation can therefore act synergistically with hemorrhage-induced inflammation, amplifying cytokine release and accelerating the progression to

systemic hyperinflammation [16-17]. Pregnancy-specific immune adaptations may also influence susceptibility to cytokine storm. The maternal immune system is dynamically regulated throughout gestation, with a careful balance between pro-inflammatory and anti-inflammatory states. Severe hemorrhage disrupts this balance, potentially tipping the immune response toward uncontrolled cytokine production. This immunological context may explain why some women experience persistent organ dysfunction and hypotension disproportionate to blood loss alone [18-19].

Endothelial Dysfunction as a Central Mediator of Maternal Morbidity

Endothelial dysfunction occupies a central role in linking cytokine storm to maternal morbidity in the context of severe postpartum hemorrhage (PPH). While acute blood loss initiates hypovolemic shock, it is the subsequent inflammatory insult and endothelial activation that often drive persistent hemodynamic instability, organ injury, and coagulopathy. Understanding the mechanisms by which endothelial injury amplifies maternal risk is critical for redefining severe PPH as both a circulatory and immunological catastrophe [20]. During pregnancy, the maternal endothelium is physiologically adapted to accommodate increased blood volume and maintain low systemic vascular resistance. These adaptations involve enhanced nitric oxide-mediated vasodilation, increased glycocalyx integrity, and modulation of vascular permeability. In the setting of cytokine storm, pro-inflammatory mediators such as interleukin-6, tumor necrosis factor- α , and interleukin-1 β disrupt these protective mechanisms. Endothelial cells lose barrier integrity, leading to capillary leak, tissue edema, and intravascular volume depletion that is often disproportionate to actual blood loss. This vasoplegic state manifests clinically as hypotension refractory to fluids and contributes to shock persistence even after hemorrhage control [21-22].

Beyond vascular permeability, endothelial activation triggers a prothrombotic and pro-inflammatory phenotype. Upregulation of adhesion molecules promotes leukocyte adherence, while expression of tissue factor and suppression of anticoagulant pathways disrupt normal hemostasis. The resulting immunothrombotic state contributes both to ongoing bleeding complications and microvascular obstruction, further compromising organ perfusion. These microvascular disturbances are key drivers of multiorgan dysfunction observed in women experiencing severe PPH complicated by cytokine storm [23-24]. Endothelial injury also mediates cross-talk between inflammation and coagulation. Cytokine-induced disruption of the glycocalyx and endothelial junctions facilitates exposure of subendothelial tissue and activation of platelets and clotting cascades. Concurrently, endothelial apoptosis and oxidative stress exacerbate vascular instability, creating a vicious cycle in which hemorrhage, inflammation, and endothelial dysfunction perpetuate each other. This interplay explains why some women exhibit progressive organ injury despite adequate hemodynamic resuscitation and correction of anemia [25-26]. Capillary leak and endothelial-mediated fluid shifts further complicate maternal management. Pulmonary edema, pleural effusions, and tissue edema increase morbidity, particularly when aggressive fluid resuscitation is employed without recognition of underlying vascular pathology. Renal and hepatic perfusion may be compromised by endothelial dysfunction in the microcirculation, contributing to organ-specific manifestations of cytokine storm.

Clinical Manifestations and Maternal Morbidity

Cytokine storm in the context of severe postpartum hemorrhage (PPH) manifests as a complex and dynamic syndrome, with clinical features that extend well beyond the typical signs of hypovolemic shock. While initial presentations may reflect acute blood loss—such as tachycardia, hypotension, pallor, and dizziness—the subsequent progression often reveals a more

systemic, inflammatory-driven pathology. Recognizing these manifestations is critical, as they are closely associated with maternal morbidity and, if unaddressed, can lead to multiorgan failure [27-28]. Persistent hypotension despite adequate fluid resuscitation is a hallmark of cytokine storm-associated maternal deterioration. Unlike classic hypovolemia, this vasoplegic state results from cytokine-mediated endothelial dysfunction and systemic vasodilation rather than continued intravascular depletion. Clinically, this may necessitate early initiation of vasopressor support to maintain tissue perfusion. The hypotension is often accompanied by tachycardia, widened pulse pressure, and signs of poor end-organ perfusion, including altered mental status, oliguria, and lactic acidosis [29-30]. Temperature dysregulation is another prominent feature. Women may present with fever, hypothermia, or fluctuating core temperatures, reflecting the systemic inflammatory milieu rather than an infectious etiology. Fatigue, malaise, and neurocognitive disturbances such as agitation or confusion may also occur, often correlating with cytokine-mediated effects on the central nervous system [31]. Respiratory compromise is commonly observed due to capillary leak and increased pulmonary vascular permeability induced by endothelial injury. Clinically, this may manifest as tachypnea, hypoxemia, pulmonary edema, or acute respiratory distress syndrome-like features. Such respiratory involvement complicates fluid management and may necessitate supplemental oxygen or mechanical ventilation [32-33]. Renal and hepatic dysfunction frequently accompany severe cytokine-driven responses. Acute kidney injury can develop despite restoration of circulating volume, reflecting microvascular injury and inflammatory stress on renal tissue. Oliguria, rising creatinine, and electrolyte imbalances are common. Similarly, hepatic dysfunction may present as elevated transaminases, hyperbilirubinemia, or impaired synthetic function, reflecting hepatocellular injury mediated by cytokine-induced endothelial stress [34-35].

Coagulopathy is a critical manifestation that links inflammation to ongoing morbidity. In cytokine storm, systemic inflammation disrupts normal

hemostasis, producing thrombocytopenia, hypofibrinogenemia, and prolonged clotting times that are often disproportionate to measured blood loss. This inflammatory coagulopathy not only exacerbates hemorrhage but also contributes to microvascular thrombosis, compounding organ dysfunction [36]. A defining feature of cytokine storm in obstetrics is its often biphasic clinical course. Some women may initially stabilize following hemorrhage control, only to deteriorate hours later as inflammatory cascades become fully activated. This delayed worsening, marked by escalating vasopressor requirements, respiratory compromise, and progressive organ dysfunction, serves as a clinical clue distinguishing cytokine-mediated maternal morbidity from isolated hemorrhagic shock [37-38].

Diagnostic Challenges and Biomarkers

Diagnosing cytokine storm in the context of severe postpartum hemorrhage (PPH) presents significant clinical challenges. The overlapping features of hypovolemic shock, sepsis, transfusion reactions, and pregnancy-specific coagulopathies complicate timely recognition, often delaying targeted interventions. Unlike infectious or cardiogenic shock, cytokine storm in obstetrics lacks standardized diagnostic criteria, making clinical suspicion and careful interpretation of biomarkers essential for early identification [39]. A central diagnostic challenge lies in distinguishing persistent maternal deterioration due to systemic inflammation from ongoing blood loss. In cytokine storm, hypotension, tachycardia, and organ dysfunction may continue despite effective hemorrhage control and adequate fluid resuscitation. This dissociation between hemodynamic instability and measured blood loss is a critical clinical clue. Additionally, the often biphasic course—initial stabilization followed by sudden worsening—further complicates recognition, as clinicians may mistakenly attribute delayed deterioration to unrecognized hemorrhage or infection [40-41].

Laboratory biomarkers provide valuable, albeit indirect, evidence of cytokine-mediated

pathology. Elevated levels of inflammatory mediators, particularly interleukin-6 (IL-6), C-reactive protein (CRP), and ferritin, are commonly observed in women experiencing cytokine storm. While routine cytokine assays are not widely available in clinical obstetrics, trends in CRP and ferritin may serve as practical surrogates for systemic inflammation when interpreted in conjunction with clinical findings [42]. Endothelial injury markers offer additional diagnostic insight. Elevated lactate in the setting of adequate perfusion reflects microcirculatory dysfunction, while angiopoietin-2, von Willebrand factor, and soluble thrombomodulin (where available) indicate endothelial activation and loss of vascular integrity. These markers correlate with capillary leak, hypotension refractory to fluids, and organ hypoperfusion [43]. Coagulation parameters are particularly informative in differentiating cytokine storm from isolated hemorrhagic shock. Women may exhibit hypofibrinogenemia, thrombocytopenia, and prolonged clotting times that are disproportionate to their measured blood loss. Viscoelastic testing, when accessible, may further reveal impaired clot strength and dysregulated fibrinolysis, reflecting the inflammatory-driven coagulopathy characteristic of cytokine storm [44].

Organ-specific biomarkers can also assist in the diagnostic process. Rising creatinine and reduced urine output indicate inflammatory renal microvascular injury, while elevated transaminases and bilirubin suggest hepatocellular stress. Cardiac markers, such as troponin and B-type natriuretic peptide, may be modestly elevated due to cytokine-induced myocardial strain, even in the absence of primary cardiac pathology [45]. Despite these tools, the diagnosis of cytokine storm in severe PPH remains largely integrative and exclusionary. Infection must always be considered and appropriately ruled out, yet the absence of a clear infectious source, negative cultures, and poor response to antimicrobials should raise suspicion for an inflammatory etiology. The combined assessment of clinical trajectory, laboratory trends, endothelial markers, coagulation parameters, and organ-specific biomarkers offers the best approach for timely recognition [46].

Therapeutic and Management Implications

The recognition of cytokine storm as a central contributor to maternal deterioration in severe postpartum hemorrhage (PPH) has important implications for therapy and critical care management. Traditional approaches to PPH have focused primarily on rapid hemorrhage control, volume replacement, and correction of coagulopathy. While these interventions remain foundational, they may be insufficient when systemic inflammation and endothelial dysfunction are driving persistent hypotension, organ injury, and coagulopathy. Management strategies must therefore evolve to address both hemodynamic and inflammatory components of maternal shock [47]. **Hemodynamic stabilization** remains the first priority. Prompt control of hemorrhage through uterotronics, surgical intervention, or interventional radiology is essential to halt ongoing blood loss. Volume resuscitation with crystalloids and blood products must be carefully titrated, as excessive fluid administration can exacerbate endothelial leak, pulmonary edema, and tissue hypoxia in the setting of cytokine-mediated capillary permeability. Early initiation of vasopressors is often necessary in women with persistent hypotension, particularly when standard fluid resuscitation fails to restore perfusion [48].

Transfusion strategies also require adaptation. While balanced massive transfusion protocols remain standard for severe PPH, clinicians should be aware of the potential for transfusion-related immune activation, which may amplify cytokine release. Targeted transfusion guided by laboratory parameters, including hemoglobin, platelet count, fibrinogen levels, and viscoelastic testing, can reduce unnecessary exposure to blood products while addressing coagulopathy [49]. **Organ support** is critical in cytokine storm-associated maternal morbidity. Respiratory compromise from capillary leak may necessitate supplemental oxygen, non-invasive ventilation, or mechanical ventilation. Renal and hepatic dysfunction require close monitoring of laboratory parameters, fluid balance, and, where necessary, renal replacement therapy or other organ-supportive interventions.

The biphasic or delayed nature of cytokine storm underscores the importance of ongoing monitoring, even after apparent stabilization [50]. **Immunomodulatory interventions** represent an emerging therapeutic consideration. Corticosteroids may attenuate cytokine production and stabilize endothelial function, particularly in refractory cases of inflammatory shock. Although targeted cytokine-directed therapies, such as interleukin-6 inhibitors, have shown efficacy in other cytokine storm syndromes, robust evidence in obstetric populations remains limited. Any immunomodulatory approach must balance the risks of immunosuppression with the potential benefit of dampening excessive inflammation [51].

Multidisciplinary care is essential. Optimal management of cytokine storm in severe PPH requires coordination between obstetricians, anesthesiologists, critical care specialists, hematologists, and transfusion medicine teams. Structured protocols for early recognition, escalation of care, and integration of hemodynamic, coagulatory, and inflammatory management improve the likelihood of favorable maternal outcomes [52]. **Preventive strategies and early recognition** are equally important. Awareness of high-risk scenarios—such as massive transfusion, prolonged labor, or preexisting endothelial or coagulation disorders—allows clinicians to anticipate and mitigate the progression of cytokine-mediated maternal shock. Early monitoring of inflammatory biomarkers, endothelial injury markers, and organ function can facilitate timely intervention before irreversible organ damage occurs [51-52].

Conclusion

Severe postpartum hemorrhage is increasingly recognized not only as a hemodynamic emergency but also as a trigger for cytokine storm, a systemic hyperinflammatory state that amplifies maternal morbidity and mortality. The interplay of hemorrhage-induced tissue hypoxia, ischemia-reperfusion injury, transfusion-related immune activation, and endothelial dysfunction creates a cascade in which persistent hypotension,

coagulopathy, and multiorgan dysfunction may occur even after effective hemorrhage control. Recognizing cytokine storm as a key contributor to maternal deterioration reframes severe PPH as both a circulatory and immunological catastrophe, rather than a purely hypovolemic event. This perspective has profound implications for clinical practice. Early recognition, integration of biomarkers of inflammation and endothelial injury, and careful assessment of organ function are essential for accurate diagnosis. Therapeutic strategies must combine timely hemorrhage control, judicious fluid and transfusion management, vasopressor support, organ-specific care, and, in selected cases, immunomodulatory interventions. Multidisciplinary critical care coordination is crucial to optimize outcomes.

References

1. Ubom, A. E., Muslim, Z., Beyeza-Kashesya, J., Schlembach, D., Malel, Z. J., Begum, F., Nunes, I., Wright, A., & FIGO Childbirth and PPH Committee (2025). Postpartum hemorrhage: Findings of a global survey by the World Association of Trainees in Obstetrics and Gynecology (WATOG). *International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics*, 171(2), 593–600. <https://doi.org/10.1002/ijgo.70512>
2. Amanuel, T., Dache, A., & Dona, A. (2021). Postpartum Hemorrhage and its Associated Factors Among Women who Gave Birth at Yirgalem General Hospital, Sidama Regional State, Ethiopia. *Health services research and managerial epidemiology*, 8, 23333928211062777. <https://doi.org/10.1177/23333928211062777>
3. Obeagu, E. I., & Obeagu, G. U. (2024). Protecting maternal health: Strategies against HIV and malaria in pregnancy. *Medicine*, 103(36), e39565. <https://doi.org/10.1097/MD.00000000000039565>
4. Obeagu, G. U., Altraide, B. O., & Obeagu, E. I. (2025). Iron deficiency anemia in pregnancy and related complications with specific insight in Rivers State, Nigeria: a narrative review. *Annals of medicine and surgery* (2012), 87(6), 3435–3444. <https://doi.org/10.1097/MS9.0000000000003224>
5. Hussain, T., Murtaza, G., Kalhoro, D. H., Kalhoro, M. S., Yin, Y., Chughtai, M. I., Tan, B., Yaseen, A., & Rehman, Z. U. (2022). Understanding the Immune System in Fetal Protection and Maternal Infections during Pregnancy. *Journal of immunology research*, 2022, 7567708. <https://doi.org/10.1155/2022/7567708>
6. Mor, G., Cardenas, I., Abrahams, V., & Guller, S. (2011). Inflammation and pregnancy: the role of the immune system at the implantation site. *Annals of the New York Academy of Sciences*, 1221(1), 80–87. <https://doi.org/10.1111/j.1749-6632.2010.05938.x>
7. Arvanitis, P., Tziotis, A., Papadimatos, S., & Farmakiotis, D. (2025). Pathogenesis, Diagnosis, and Management of Cytokine Release Syndrome in Patients with Cancer: Focus on Infectious Disease Considerations. *Current oncology (Toronto, Ont.)*, 32(4), 198. <https://doi.org/10.3390/curroncol32040198>
8. Chen, P., Tang, Y., He, W., Yang, R., Lan, Z., Chen, R., & Zhang, P. (2022). Potential Pathophysiological Mechanisms Underlying Multiple Organ Dysfunction in Cytokine Release Syndrome. *Mediators of inflammation*, 2022, 7137900. <https://doi.org/10.1155/2022/7137900>
9. Obeagu, G. U., & Obeagu, E. I. (2025). Complications of anemia in pregnancy: An updated overview for healthcare professionals. *Medicine*, 104(35), e44246. <https://doi.org/10.1097/MD.00000000000044246>

10. Dube, R., Kar, S. S., Satapathy, S., George, B. T., & Garg, H. (2025). Determining the Correlation Between Blood Loss and Clinical Findings Among Patients with Postpartum Hemorrhage. *Women's health reports* (New Rochelle, N.Y.), 6(1), 37–42. <https://doi.org/10.1089/whr.2024.0103>

11. Maneschi, F., Perrone, S., Di Lucia, A., & Ianiri, P. (2020). Shock parameters and shock index during severe post-partum haemorrhage and implications for management: a clinical study. *Journal of obstetrics and gynaecology : the journal of the Institute of Obstetrics and Gynaecology*, 40(1), 40–45. <https://doi.org/10.1080/01443615.2019.1603210>

12. Liu, L. Y., Nathan, L., Sheen, J. J., & Goffman, D. (2023). Review of Current Insights and Therapeutic Approaches for the Treatment of Refractory Postpartum Hemorrhage. *International journal of women's health*, 15, 905–926. <https://doi.org/10.2147/IJWH.S366675>

13. Matsubara, S., Matsubara, D., Takahashi, H., & Lefor, A. K. (2017). Re: Serious maternal complications in relation to severe pre-eclampsia: a retrospective cohort study of the impact of hospital volume; Severe maternal morbidity requires regionalisation of obstetric critical care; Guilt, blame and litigation: can an overenthusiastic 'safety culture' cause harm?: Maternal mortality: the heavy psychological burden on centre obstetricians. *BJOG : an international journal of obstetrics and gynaecology*, 124(10), 1621–1622. <https://doi.org/10.1111/1471-0528.14617>

14. Obeagu E. I. (2025). Climate change and red blood cell disorders: A review of risks and adaptations for pregnant women and children. *Medicine*, 104(40), e45129. <https://doi.org/10.1097/MD.00000000000045129>

15. de Vries, P. L. M., Deneux-Tharaux, C., Caram-Deelder, C., Goffinet, F., Henriquez, D. D. C. A., Seco, A., van der Bom, J. G., & van den Akker, T. (2024). Severe postpartum hemorrhage and the risk of adverse maternal outcome: A comparative analysis of two population-based studies in France and the Netherlands. *Preventive medicine reports*, 40, 102665. <https://doi.org/10.1016/j.pmedr.2024.102665>

16. Bienstock, J. L., Eke, A. C., & Hueppchen, N. A. (2021). Postpartum Hemorrhage. *The New England journal of medicine*, 384(17), 1635–1645. <https://doi.org/10.1056/NEJMra1513247>

17. Haouzi P. (2013). Tissue hypoxia during acute hemorrhage. *Critical care (London, England)*, 17(2), 423. <https://doi.org/10.1186/cc12519>

18. Gutierrez, G., Reines, H. D., & Wulf-Gutierrez, M. E. (2004). Clinical review: hemorrhagic shock. *Critical care (London, England)*, 8(5), 373–381. <https://doi.org/10.1186/cc2851>

19. Vázquez-Galán, Y. I., Guzmán-Silahua, S., Trujillo-Rangel, W. Á., & Rodríguez-Lara, S. Q. (2025). Role of Ischemia/Reperfusion and Oxidative Stress in Shock State. *Cells*, 14(11), 808. <https://doi.org/10.3390/cells14110808>

20. Jurcau, A., & Ardelean, A. I. (2022). Oxidative Stress in Ischemia/Reperfusion Injuries following Acute Ischemic Stroke. *Biomedicines*, 10(3), 574. <https://doi.org/10.3390/biomedicines10030574>

21. Obeagu E. I. (2025). Echocardiographic and platelet markers of cardiovascular strain in sickle cell disease with superimposed preeclampsia: a perspective. *Annals of medicine and surgery* (2012), 88(1), 1166–1170. <https://doi.org/10.1097/MS9.00000000000004332>

22. Boeldt, D. S., & Bird, I. M. (2017). Vascular adaptation in pregnancy and endothelial dysfunction in preeclampsia. *The Journal of endocrinology*, 232(1), R27–R44. <https://doi.org/10.1530/JOE-16-0340>

23. Zhang C. (2008). The role of inflammatory cytokines in endothelial dysfunction. *Basic research in cardiology*, 103(5), 398–406. <https://doi.org/10.1007/s00395-008-0733-0>

24. Wilhelm, G., Mertowska, P., Mertowski, S., Przysucha, A., Stružyna, J., Grywalska, E., & Torres, K. (2023). The Crossroads of the Coagulation System and the Immune System: Interactions and Connections. *International journal of molecular sciences*, 24(16), 12563. <https://doi.org/10.3390/ijms241612563>

25. Zhu, L., Dong, H., Li, L., & Liu, X. (2025). The Mechanisms of Sepsis Induced Coagulation Dysfunction and Its Treatment. *Journal of inflammation research*, 18, 1479–1495. <https://doi.org/10.2147/JIR.S504184>

26. Loss, L., Tinoco-Garcia, L., & Schreiber, M. (2024). Resuscitative adjuncts and alternative products when blood supplies are limited. *Trauma surgery & acute care open*, 9(Suppl 2), e001415. <https://doi.org/10.1136/tsaco-2024-001415>

27. Straat, M., Böing, A. N., Tuip-De Boer, A., Nieuwland, R., & Juffermans, N. P. (2016). Extracellular Vesicles from Red Blood Cell Products Induce a Strong Pro-Inflammatory Host Response, Dependent on Both Numbers and Storage Duration. *Transfusion medicine and hemotherapy :offizielles Organ der Deutschen Gesellschaft für Transfusionsmedizin und Immunhämatologie*, 43(4), 302–305. <https://doi.org/10.1159/000442681>

28. Obeagu, E. I., & Obeagu, G. U. (2024). An update on factors affecting umbilical cord care among mothers: A review. *Medicine*, 103(28), e38945. <https://doi.org/10.1097/MD.00000000000038945>

29. Satué, K., La Fauci, D., Medica, P., DamiáGiménez, E., Cravana, C., & Fazio, E. (2025). Shifts between pro-inflammatory and anti-inflammatory profiles in pregnant mares: a review of physiological functions. *Frontiers in veterinary science*, 12, 1660759. <https://doi.org/10.3389/fvets.2025.1660759>

30. Abu-Raya, B., Michalski, C., Sadarangani, M., & Lavoie, P. M. (2020). Maternal Immunological Adaptation During Normal Pregnancy. *Frontiers in immunology*, 11, 575197. <https://doi.org/10.3389/fimmu.2020.575197>

31. Bienstock, J. L., Eke, A. C., & Hueppchen, N. A. (2021). Postpartum Hemorrhage. *The New England journal of medicine*, 384(17), 1635–1645. <https://doi.org/10.1056/NEJMra1513247>

32. Dube, R., Kar, S. S., Satapathy, S., George, B. T., & Garg, H. (2025). Determining the Correlation Between Blood Loss and Clinical Findings Among Patients with Postpartum Hemorrhage. *Women's health reports (New Rochelle, N.Y.)*, 6(1), 37–42. <https://doi.org/10.1089/whr.2024.0103>

33. Garami, A., Steiner, A. A., & Romanovsky, A. A. (2018). Fever and hypothermia in systemic inflammation. *Handbook of clinical neurology*, 157, 565–597. <https://doi.org/10.1016/B978-0-444-64074-1.00034-3>

34. Swenson, K. E., & Swenson, E. R. (2021). Pathophysiology of Acute Respiratory Distress Syndrome and COVID-19 Lung Injury. *Critical care clinics*, 37(4), 749–776. <https://doi.org/10.1016/j.ccc.2021.05.003>

35. Thanasa, A., Thanasa, E., Xydias, E. M., Kamaretsos, E., Kontogeorgis, G., Paraoulakis, I., Ziogas, A. C., & Thanasas, I. (2025). Postpartum Hemorrhage-Induced Acute Kidney Injury Following Obstetric Hysterectomy: A Case Report. *Cureus*, 17(3), e80516. <https://doi.org/10.7759/cureus.80516>

36. Ramírez-Mejía, M. M., Castillo-Castañeda, S. M., Pal, S. C., Qi, X., & Méndez-Sánchez, N. (2024). The Multifaceted Role of Bilirubin in Liver Disease: A Literature Review. *Journal of clinical and translational hepatology*, 12(11), 939–948. <https://doi.org/10.14218/JCTH.2024.00156>

37. Levi, M., & Opal, S. M. (2006). Coagulation abnormalities in critically ill patients. *Critical care (London, England)*, 10(4), 222. <https://doi.org/10.1186/cc4975>

38. Butwick, A. J., Ramachandran, B., Hegde, P., Riley, E. T., El-Sayed, Y. Y., & Nelson, L. M. (2017). Risk Factors for Severe Postpartum Hemorrhage After Cesarean Delivery: Case-Control Studies. *Anesthesia and analgesia*, 125(2), 523–532. <https://doi.org/10.1213/ANE.0000000000000001962>

39. Athale, J., Busch, L. M., & O'Grady, N. P. (2022). Cytokine Release Syndrome and Sepsis: Analogous Clinical Syndromes with Distinct Causes and Challenges in Management. *Infectious disease clinics of North America*, 36(4), 735–748. <https://doi.org/10.1016/j.idc.2022.07.001>

40. Herget-Rosenthal, S., Saner, F., & Chawla, L. S. (2008). Approach to hemodynamic shock and vasopressors. *Clinical journal of the American Society of Nephrology : CJASN*, 3(2), 546–553. <https://doi.org/10.2215/CJN.01820407>

41. Held, C., White, H. D., Stewart, R. A. H., Budaj, A., Cannon, C. P., Hochman, J. S., Koenig, W., Siegbahn, A., Steg, P. G., Soffer, J., Weaver, W. D., Östlund, O., Wallentin, L., & STABILITY Investigators (2017). Inflammatory Biomarkers Interleukin-6 and C-Reactive Protein and Outcomes in Stable Coronary Heart Disease: Experiences From the STABILITY (Stabilization of Atherosclerotic Plaque by Initiation of Darapladib Therapy) Trial. *Journal of the American Heart Association*, 6(10), e005077. <https://doi.org/10.1161/JAHA.116.005077>

42. Sproston, N. R., & Ashworth, J. J. (2018). Role of C-Reactive Protein at Sites of Inflammation and Infection. *Frontiers in immunology*, 9, 754. <https://doi.org/10.3389/fimmu.2018.00754>

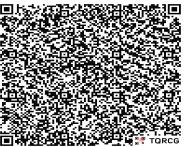
43. Hendrickson, C. M., & Matthay, M. A. (2018). Endothelial biomarkers in human sepsis: pathogenesis and prognosis for ARDS. *Pulmonary circulation*, 8(2), 2045894018769876. <https://doi.org/10.1177/2045894018769876>

44. Retter, A., & Hunt, B. J. (2023). Consumptive coagulopathy in the ICU. *Hematology. American Society of Hematology. Education Program*, 2023(1), 754–760. <https://doi.org/10.1182/hematology.2023000502>

45. Devarajan P. (2008). Emerging urinary biomarkers in the diagnosis of acute kidney injury. *Expert opinion on medical diagnostics*, 2(4), 387–398. <https://doi.org/10.1517/17530059.2.4.387>

46. Dube, R., Kar, S. S., Satapathy, S., George, B. T., & Garg, H. (2025). Determining the Correlation Between Blood Loss and Clinical Findings Among Patients with Postpartum Hemorrhage. *Women's health reports (New Rochelle, N.Y.)*, 6(1), 37–42. <https://doi.org/10.1089/whr.2024.0103>

47. Trikha, A., & Singh, P. M. (2018). Management of major obstetric haemorrhage. *Indian journal of anaesthesia*, 62(9), 698–703. https://doi.org/10.4103/ija.IJA_448_18


48. Patil, V., & Shetmahajan, M. (2014). Massive transfusion and massive transfusion protocol. *Indian journal of anaesthesia*, 58(5), 590–595. <https://doi.org/10.4103/0019-5049.144662>

49. Pinsky, M. R., Cecconi, M., Chew, M. S., De Backer, D., Douglas, I., Edwards, M., Hamzaoui, O., Hernandez, G., Martin, G., Monnet, X., Saugel, B., Scheeren, T. W. L., Teboul, J. L., & Vincent, J. L. (2022). Effective hemodynamic monitoring. *Critical care (London, England)*, 26(1), 294. <https://doi.org/10.1186/s13054-022-04173-z>

50. Obeagu E. I. (2025). Immunomodulatory strategies for managing cytokine storms in chronic COVID: mechanisms, therapeutic targets, and clinical advances. *Annals of medicine and surgery (2012)*, 88(1), 653–659. <https://doi.org/10.1097/MS9.00000000000004621>

51. Muñoz, M., Stensballe, J., Ducloy-Bouthors, A. S., Bonnet, M. P., De Robertis, E., Fornet, I., Goffinet, F., Hofer, S., Holzgreve, W., Manrique, S., Nizard, J., Christory, F., Samama, C. M., & Hardy, J. F. (2019). Patient blood management in obstetrics: prevention and treatment of postpartum haemorrhage. A NATA consensus statement. *Blood transfusion = Trasfusione del sangue*, 17(2), 112–136. <https://doi.org/10.2450/2019.0245-18>

52. Butwick, A. J., Ramachandran, B., Hegde, P., Riley, E. T., El-Sayed, Y. Y., & Nelson, L. M. (2017). Risk Factors for Severe Postpartum Hemorrhage After Cesarean Delivery: Case-Control Studies. *Anesthesia and analgesia*, 125(2), 523–532. <https://doi.org/10.1213/ANE.0000000000000001962>

Access this Article in Online	
	Website: www.ijcrims.com
	Subject: Medical Sciences
Quick Response Code	DOI: 10.22192/ijcrms.2026.12.01.004

How to cite this article:

Emmanuel Ifeanyi Obeagu. (2026). Cytokine Storm in Obstetrics: Linking Postpartum Hemorrhage, Endothelial Dysfunction, and Maternal Morbidity. *Int. J. Curr. Res. Med. Sci.* 12(1): 30-40.
DOI: [http://dx.doi.org/10.22192/ijcrms.2026.12.01.004](https://doi.org/10.22192/ijcrms.2026.12.01.004)