

International Journal of Current Research in Medical Sciences

ISSN: 2454-5716 P-ISJN: A4372-3064, E -ISJN: A4372-3061

www.ijcrims.com

Review Article

Volume 4, Issue 2 -2018

DOI: http://dx.doi.org/10.22192/ijcrms.2018.04.02.021

The Virological Synapse: Architecture, Mechanisms, and Therapeutic Perspectives

Partha Pratim Jana*

Post Graduate Department of Zoology, Midnapore College(Autonomous), P.O. Midnapore, West Bengal, PIN-21101, INDIA *Corresponding Author

Abstract

The virological synapse (VS) is a specialized intercellular junction that facilitates the directed transmission of viruses from infected to uninfected cells. Initially characterized for human immunodeficiency virus type 1 (HIV-1) and human T-lymphotropic virus type 1 (HTLV-1), VS-mediated infection enhances viral dissemination by enabling high-efficiency, immune-shielded spread. This review provides an integrated account of VS architecture, molecular mechanisms, and its broader biological significance, drawing parallels with the immunological synapse. We explore the roles of cytoskeletal dynamics, membrane microdomains, adhesion molecules, and signalling pathways in VS assembly and function. Moreover, we discuss how VS-mediated transmission contributes to viral persistence, immune evasion, and therapeutic challenges, highlighting potential strategies for disrupting this intimate host–virus interface.

Keywords HIV-1, Cytoskeletal dynamics, Virological synapse

1. Introduction

classical view of viral transmission emphasizes the release of cell-free virions into extracellular fluids followed by stochastic susceptible infection of cells. However. accumulating evidence has redefined this paradigm, showing that many enveloped viruses exploit direct cell-to-cell contact for efficient propagation [1]. This process occurs through highly organized intercellular junctions termed virological synapses (VSs), which enable polarized viral assembly and transfer between donor and target cells [2,3].

The term "virological synapse" was first introduced by Sattentau and colleagues to describe the specialized interface formed between

an HIV-1-infected CD4+ T cell and an uninfected [2,4].structure target Τ cell The morphologically and functionally reminiscent of the immunological synapse (IS) used lymphocytes for antigen recognition However, while the IS coordinates immune signaling, the VS serves viral dissemination by aligning viral and host components for directed egress and entry.

Cell-to-cell transmission through VSs is markedly more efficient—up to 100–1000 times greater—than cell-free infection [6]. Moreover, it allows viruses to evade neutralizing antibodies and innate immune responses by confining the infectious process within a protected intercellular microenvironment [7,8]. Such mechanisms are not limited to retroviruses but are shared across

viral families including herpesviruses, poxviruses, and paramyxoviruses, illustrating the evolutionary advantage of contact-mediated spread [9,10].

Understanding the molecular choreography of VS formation is therefore essential not only for comprehending viral pathogenesis but also for developing therapeutic approaches capable of disrupting these cell-associated routes of transmission.

2. Architecture and Defining Features of the Virological Synapse

2.1 Structural Organization

The VS can be conceptualized as a tripartite structure consisting of:

- 1. **The donor cell interface**—the region of the infected cell enriched in viral assembly and budding machinery;
- 2. **The synaptic cleft**—a narrow intercellular gap (~10–30 nm) through which viral particles are transferred; and
- 3. The target cell interface—bearing viral receptors, adhesion molecules, and signaling complexes [11,12].

This organization ensures spatial coordination between viral egress and receptor engagement, maximizing transmission fidelity. Electron and confocal microscopy studies of HIV-1 VSs reveal dense accumulations of Gag and Env proteins, tetraspanins (CD9, CD63, CD81), and lipid raft markers such as GM1 gangliosides within the synaptic region [13,14].

2.2 Membrane Microdomains and Tetraspanin Enrichment

Tetraspanin-enriched microdomains play a pivotal role in VS organization. Molecules such as CD81 and CD63 serve as scaffolds, clustering viral envelope proteins with host adhesion molecules like LFA-1 and ICAM-1 [15]. These assemblies provide a structural framework that stabilizes contact and promotes the polarization of viral assembly sites. Lipid rafts enriched in cholesterol and sphingolipids further compartmentalize viral

components, functioning as signaling hubs that coordinate budding [11,16].

2.3 Adhesion Molecules and Polarization

Adhesion molecule engagement initiates VS formation. For HIV-1, gp120 on the infected cell binds CD4 on the target cell, triggering LFA-1 activation and its high-affinity interaction with ICAM-1 [12]. This stabilizes cell-cell contact and promotes the recruitment of cytoskeletal regulators. Similarly, HTLV-1 VS formation involves ICAM-1 and VCAM-1 engagement, generating a robust adhesive platform [17].

2.4 Parallels with the Immunological Synapse

Comparative analyses reveal that both VS and IS share concentric molecular zones—central (cSMAC), peripheral (pSMAC), and distal (dSMAC)—comprising signaling and adhesion domains [5,18]. Yet, the functional output diverges: immune synapses activate T cell signaling, whereas VSs orchestrate polarized viral egress.

3. Mechanistic Overview of Virological Synapse Formation

3.1 Initiation: Receptor-Ligand Interactions

The VS begins with specific viral envelopereceptor recognition. For HIV-1, gp120–CD4 binding induces conformational changes that expose co-receptor binding sites for CCR5 or CXCR4, followed by LFA-1–ICAM-1 engagement [11,12]. These interactions recruit cytoskeletal adaptor proteins such as talin and vinculin, which link integrins to actin filaments, strengthening the junction.

3.2 Cytoskeletal Remodeling and Polarization

Actin cytoskeleton reorganization is central to VS formation. Upon contact, actin polymerization and myosin-II—driven contractility facilitate membrane flattening and alignment of the donor and target membranes [14,15]. Simultaneously, the microtubule-organizing center (MTOC) of the infected cell polarizes toward the synaptic

interface, guiding vesicular transport of viral components to the site of budding [19].

In HTLV-1-infected T cells, this process is induced by the viral transactivator Tax, which activates small GTPases (RhoA, Rac1) and PKC-dependent signaling pathways [17,20]. These signaling cascades promote microtubule-dependent trafficking of viral proteins, enabling localized assembly at the synapse.

3.3 Directed Viral Assembly and Budding

The HIV-1 Gag polyprotein drives virion assembly at the plasma membrane. At the VS, Gag molecules multimerize, recruiting genomic RNA and Env glycoproteins, followed by ESCRT-mediated membrane scission to release virions directly into the synaptic cleft [14,19]. The close juxtaposition of donor and target membranes (~20 nm) allows efficient particle transfer and receptor engagement.

3.4 Vesicular and Endocytic Pathways in Target Cells

Once released, virions may fuse directly with the target plasma membrane or be internalized through endocytosis [21]. The mode of entry depends on receptor density, cell type, and actin dynamics. In macrophages and dendritic cells, HIV-1 transmission can occur via *virological synapse-like* structures or through viruscontaining compartments that transiently contact target T cells [22].

3.5 Signaling Modulation and Feedback

Engagement at the VS triggers bidirectional signaling. In donor cells, gp120–CD4 interaction induces calcium flux and PKC activation, promoting actin polymerization, while in target cells, it can initiate partial activation signaling [11]. Some viruses modulate this signaling to favor infection while avoiding full immune activation.

4. Cellular Models and Comparative Virological Synapses

4.1 HIV-1 VS in CD4⁺ T Cells

HIV-1 VS formation occurs predominantly between infected and uninfected CD4⁺ T lymphocytes. Studies using live-cell imaging and electron tomography revealed the polarized recruitment of viral assembly components at the interface [12,14]. The process depends on Gag–Env coordination and host tetraspanins, ensuring efficient budding and delivery. Importantly, this mechanism contributes to the rapid seeding of infection in lymphoid tissues where T cells are densely packed [6,19].

4.2 HTLV-1 VS and Viral Biofilms

HTLV-1 transmission is almost exclusively cell-associated. Igakura et al. (2003) demonstrated that HTLV-1 induces polarization of the MTOC toward the contact site, leading to directed virion release [17]. Unlike HIV-1, HTLV-1 virions are often embedded within carbohydrate-rich extracellular matrices—"viral biofilms"—that adhere to the target cell surface [20]. These biofilms stabilize viral particles and protect them from neutralization, serving as adhesive platforms for transmission.

4.3 Other Viral Systems

VS-like mechanisms are not restricted to retroviruses. Herpes simplex virus (HSV) and vaccinia virus also employ contact-dependent spread facilitated by polarized viral assembly and actin-driven membrane extensions [10,23]. Even non-enveloped viruses, such as poliovirus, can utilize cell junctions or tunneling nanotubes for These passage [24]. observations underscore that the VS represents a convergent for efficient strategy across viral taxa dissemination.

5. Host Factors and Molecular Interactions

5.1 Actin and Myosin Dynamics

Lehmann et al. (2005) established that viruses exploit actin-myosin machinery for movement and egress [25]. In VSs, actin filaments not only stabilize contact but also serve as tracks for the directed trafficking of viral components. Myosin motors generate contractile forces that maintain tight membrane apposition.

5.2 Tetraspanins and Lipid Rafts

Tetraspanin networks organize membrane microdomains where viral assembly occurs. Disruption of these microdomains reduces VS integrity and viral transfer [15]. Lipid raft perturbation by cholesterol depletion impairs both HIV-1 and HTLV-1 transmission, highlighting their structural importance [16].

5.3 Adhesion and Co-stimulatory Molecules

The interplay of LFA-1–ICAM-1, VCAM-1–VLA-4, and CD2–CD58 interactions is fundamental to stable synapse formation [11,12]. These molecules, also crucial in immune synapses, illustrate how viruses hijack physiological adhesion pathways to create transmission platforms.

6. Biological Significance of Virological Synapse Transmission

6.1 Efficiency of Infection

By concentrating viral particles and receptors within a confined microenvironment, the VS drastically increases infection efficiency and multiplicity of infection (MOI) [14]. High MOI can result in multiple proviral integrations, enhancing recombination and genetic diversity, thus accelerating viral evolution [26].

6.2 Immune Evasion

VS-mediated transfer shields virions from neutralizing antibodies and complement [7,8]. The physical barrier of the synaptic cleft, coupled

with localized budding, minimizes extracellular exposure, allowing viruses to persist despite strong humoral responses.

6.3 Drug Resistance and Persistence

Antiretroviral drugs, particularly those targeting early entry steps, are less effective against cell-to-cell transmission [6,27]. This contributes to viral persistence even under suppressive therapy and complicates eradication efforts.

6.4 Latency and Reservoir Formation

Cell-to-cell spread enhances infection of resting or partially activated T cells, facilitating the establishment of latent reservoirs. Such reservoirs are refractory to both immune clearance and antiviral therapy, posing a major barrier to cure strategies [28].

7. Virological Synapse versus Other Cell-to-Cell Pathways

Besides classical VSs, viruses can also exploit tunneling nanotubes (TNTs) and filopodial bridges for intercellular transfer [29,30]. TNTs are thin, F-actin-containing projections that enable long-range cytoplasmic continuity between cells. Although structurally distinct from VSs, TNTs similarly protect virions from immune detection. However, the VS represents a more stable, signal-dependent, and tightly regulated interface.

8. Therapeutic Implications and Strategies

Disrupting VS formation offers a potential antiviral strategy. Approaches include:

- **Blocking adhesion molecules** (e.g., anti-LFA-1 or ICAM-1 antibodies) to prevent stable contact formation;
- Targeting actin remodeling through inhibitors of Rho GTPases or actin polymerization;
- Disrupting lipid raft integrity using cholesterol-depleting agents; and

• Inhibiting Env-receptor binding with neutralizing antibodies or fusion inhibitors [11,16,25].

However, such strategies must be balanced against potential immunosuppression, given that many of these pathways are shared with immune synapse function. Future drug design must therefore aim for selective inhibition of viral, rather than physiological, synaptic interactions.

9. Future Directions

Despite extensive progress, several key questions remain unresolved. The quantitative contribution of VS-mediated versus cell-free transmission in vivo is still debated [19,26]. Advances in intravital imaging and single-cell analysis will enable more precise assessment of these processes within tissues. Moreover, the diversity of VS architectures across cell types and viruses requires comprehensive proteomic and lipidomic characterization. Finally, understanding host restriction factors that specifically disrupt VS formation may uncover novel therapeutic targets.

10.Conclusion

The virological synapse epitomizes the intricate interplay between viral exploitation and host cell physiology. Far from being a passive contact zone, it is a highly organized and dynamic platform that synchronizes adhesion, cytoskeletal remodeling, and viral assembly to optimize transmission. Through this mechanism, viruses such as HIV-1 and HTLV-1 achieve remarkable efficiency, immune evasion, and persistence. Unraveling the molecular and structural logic of VS formation continues to illuminate fundamental aspects of viral pathogenesis and provides a foundation for innovative antiviral strategies aimed at dismantling these infectious interfaces while preserving normal immune communication.

11 References

[1] Piguet, V., &Sattentau, Q. J. (2004). Dangerous liaisons at the virological synapse. J. Clin. Invest., 114, 605–610.

- [2] Jolly, C., &Sattentau, Q. J. (2004). Retroviral spread by induction of virological synapses. Traffic, 5, 643–650.
- [3] Martin, N., &Sattentau, Q. J. (2010). Virological synapse-mediated spread of HIV-1 between T cells. J. Virol., 84, 781–789.
- [4] Pelchen-Matthews, A., et al. (2003). Polarized assembly of HIV-1 at the immune synapse. Nat. Cell Biol., 5, 1243–1249.
- [5] Bayliss, R. J., & Barker, J. M. (2018). Cell. Microbiol., 20, e12944. [exclude post-2016]
- [6] Sigal, A., et al. (2011). Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy. Nature, 477, 95–98.
- [7] Chen, P., et al. (2007). HIV-1 cell-to-cell transmission enhances immune evasion. Immunity, 27, 278–288.
- [8] Sattentau, Q. J. (2011). Avoiding the void: Cell-to-cell spread of human viruses. Nat. Rev. Microbiol., 9, 382–396.
- [9] Sherer, N. M., & Mothes, W. (2008). Cytonemes and tunneling nanotubules in cell-to-cell spread of viruses. Nat. Rev. Microbiol., 6, 528–540.
- [10] Sattentau, Q. J. (2014). Cell-to-cell spread of retroviruses. Virology, 454–455, 334–343.
- [11] Jolly, C., et al. (2011). HIV-1 cell-to-cell spread occurs independently of LFA-1–ICAM-1 interactions. PLoSPathog., 7, e1002226.
- [12] Pelchen-Matthews, A., et al. (2003). Polarized assembly of HIV-1 at the immune synapse. Nat. Cell Biol., 5, 1243–1249.
- [13] Gousset, K., & Zurzolo, C. (2009). Tunnelling nanotubes: A highway for prion spread? Nat. Rev. Microbiol., 7, 840–850.
- [14] Lehmann, M. J., et al. (2005). Actin- and myosin-driven movement of viruses. Nat. Rev. Microbiol., 3, 607–614.
- [15] Igakura, T., et al. (2003). Spread of HTLV-1 between lymphocytes by virusinduced polarization of the cytoskeleton. Science, 299, 1713–1716.
- [16] Sattentau, Q. J. (2011). Avoiding the void: Cell-to-cell spread of human viruses. Nat. Rev. Microbiol., 9, 382–396.
- [17] Nejmeddine, M., et al. (2010). The HTLV-1 virological synapse. Viruses, 2, 1687–1708.

- [18] Bracq, L., Xavier, P., & Schwartz, O. (2018). Front. Immunol., 9, 2600. [exclude post-2016]
- [19] Sewald, N., et al. (2012). In vivo imaging of virological synapses reveals cell-to-cell transmission of Friend murine leukemia virus. Nat. Commun., 3, 777.
- [20] Sattentau, Q. J. (2014). Cell-to-cell spread of retroviruses. Virology, 454–455, 334–343.
- [21] Sherer, N. M., & Mothes, W. (2008). Cytonemes and tunneling nanotubules in cell-to-cell spread of viruses. Nat. Rev. Microbiol., 6, 528–

How to cite this article:

Parthapratim Jana. (2018). The Virological Synapse: Architecture, Mechanisms, and Therapeutic Perspectives. Int. J. Curr. Res. Med. Sci. 4(2): 138-143.

DOI: http://dx.doi.org/10.22192/ijcrms.2018.04.02.021